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Abstract— A very pragmatic approach for measuring memory (or inertia) in dynamic sequences of symbols
(symbol dynamics) is proposed, where only intervals between coincidences of symbols along the sequence are
taken into account in the process of estimating the Auto Mutual Information. The proposed method is studied
using sequences of symbols obtained from two Markov sources, with two and nine states respectively. Results are
compared to expected theoretical values of mutual information, as well as to histogram-based estimations with
Miller’s entropy bias compensation.
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Stochastic processes (or random functions)
are ubiquitous tools in Science, frequently em-
ployed as powerful mathematical models when
random behaviours – through time or space – are
observed in numerically represented signals. As
illustrated in Figure 1, both natural (e.g. biologi-
cal data) and human-made (e.g. industrial plants)
systems can be regarded as sources of random sig-
nals, and these signals are typically understood
as instances of stochastic processes (Papoulis and
Pillai, 2002).

Figure 1: Symbolization of signals from dynamic
sources.

On the other hand, observed dynamics in ar-
eas such as social science, public health, zoology,
education and marketing, are commonly categori-
cal (Agresti, 2007; Daw et al., 2003). For instance,
just to give a brief flavor of what this means, we
may consider dynamic cycles of “euphoria” and,
we may consider dynamic cycles of “euphoria”and
“depression” – possibly including subcategories of
these mental states –, in psychology, or sequences
of base pairs belonging to a certain DNA chain, in
biology.

Moreover, even in highly quantitative fields
such as engineering sciences and industrial qual-
ity control, the use of symbols instead of num-

bers can simplify dynamic analysis. This rea-
soning gives support to the categoric data anal-
ysis, or symbolic analysis, already used for many
years in astrophysics, health, mechanics, artifi-
cial intelligence, control, telecommunications and
data mining (Daw et al., 2003). In most such
cases, the mapping of numeric signals into symbols
is called “Symbolization”, which clearly includes
vector-quantization. For the interested reader, we
suggest the work by Sant’Anna and Wickström
(2011) (Sant’Anna and Wickström, 2011), where
some symbolization methods are cross-compared.

In this work, we do not address symboliza-
tion issues. Instead, we assume that whatever be
the underlying dynamic, a suitable symbolization
was applied so that all observations are streams of
symbols, as illustrated in Figure 1.

Unfortunately, unlike in stochastic processes
analysis, pivotal tools such as auto-correlation
and power spectrum are not defined in Symbolic
Analysis (SA). By contrast, Auto-Mutual Infor-
mation (AMI) is a quite straightforward option as
a first step to SA. More specifically, given an in-
finitely long sequence of symbols, x+∞

−∞, xi ∈ S =
{s1, s2, . . . , sK}, where K is the cardinality of the
sampling set, for any Integer τ , and a randomly
chosen position n, the Auto Mutual Information
is given, in bits of information, by the following
Entropy balance (Cover and Thomas, 1991):

I(τ, n) = H(Xn)+H(Xn+τ )−H(Xn, Xn+τ ) (1)

where H(Xn) = −
∑K

i=1 P (Xn = si) log2 P (Xn =

si) and H(Xn, Xn+τ ) =
∑K

i=1

∑K

j=1 P (Xn =
si, Xn+τ = sj) log2 P (Xn = si, Xn+τ = sj).

By considering the stationary case, where
probabilities P (Xn = si) and P (Xn = si, Xn+τ =
sj) do not depend on n, it turns out that I(τ)
does not depend on n too, and can be conve-
niently estimated by the replacement of probabil-
ity entries, in Eq. 1, with relative frequencies of



symbols. In other words, to estimate entropy, a
natural approach is to take as many samples as
possible to build histograms and then to use these
histograms as probabilities entries in Shannon’s
formula. These approaches are known as plug-in
methods (Beirlant et al., 1997).

As a matter of fact, since practical instances
of symbol streams are finite, relative frequencies
are random variables whose logarithm transfor-
mation, in Eq. 1, induces systematic biases in
entropy estimation. For not too small streams
of symbols, bias compensation such as that pro-
posed by G. Miller (Miller, 1955) can improve es-
timation quality. In this paper, we systematically
apply Miller’s compensation in all AMI analysis
with plug-in methods. For instance, in Figure 3,
we compare the theoretical values of Normalized
AMI (NAMI),

NAMI(τ) =
H(Xn) +H(Xn+τ )−H(Xn, Xn+τ )

H(Xn)
(2)

as a function of τ , to estimated values trough two
estimation methods, including the usual plug-in
approach with Miller’s bias compensation (Miller,
1955). In this illustration, we use the very simple
two-state Markov source represented in Figure 2.
There, we can note that the NAMI approaches
zero for τ > 25, what indicates that a symbolic
event that occurs at a certain time n has almost no
influence over events after more than 25 discrete
intervals (supposing regular interval between sam-
ples). Furthermore, from another point of view,
we can infer that Markov’s transition probability
matrix (Cover and Thomas, 1991) in q steps, P q,
is almost the same for all q ≥ 25. We can refer to
this decrease in event influence through time as a
’memory’ or an ’inertia’ of the underlying dynam-
ics. By itself, the inference of memory/inertia in
Symbolic Dynamics justifies our interest in AMI
estimators (consider, for instance, the impact of
properly measuring the extent of influence of a
given event through time in Economics of Social
Dynamics).

Unfortunately, though very easy to be un-
derstood and coded in any programming lan-
guage, the plug-in approach to be properly ap-
plied, tacitly demands stochastic sources taking
symbols from sets with moderate cardinality, K,
and long enough samples of symbol streams, xL

1 ,
thus satisfying the trade-off L >> K2. Otherwise,
the estimation of the joint probability P (Xn =
si, Xn+τ = sj) would not be reliable enough.

In 2012, we proposed a very simple method
(Montalvão et al., 2012) to estimate entropy
whose main advantage, besides its simplicity of
use, is that it can estimate entropy even with
L < K. For the reader’s convenience, we revisit
here the essential explanations from (Montalvão
et al., 2012) in Section 1. Then, in Section 2, we
propose a first (non-simplified) version of a Nor-

Figure 2: Markovian symbol sources used in this
paper.

Figure 3: Auto Mutual Information of Source ’On-
Off’, with pab = pba = 0.05.

malized AMI estimator based on Coincidence De-
tection, which is eventually (over)simplified to be-
come the method proposed in Section 3. Illustra-
tive results are presented in Section 4.

1 From the ‘Birthday Problem’ to

Entropy Estimation

Motivated by the practical limitations of plug-
in methods, we formulated the following ques-
tion: can we get rid of histograms in entropy es-
timation? Fortunately, the answer is ‘yes!’ And
this answer brings together a series of interesting
points of view. Indeed, the key event in any en-
tropy measurement is the coincidence of symbols
in a sample. Strictly speaking, any histogram-
based estimator relies on coincidence counters,
since histogram bins gather coincidences of each
symbol in a stream of symbols. Though, using K
coincidence detectors can be costly.

By contrast, a method of entropy estimation



through coincidences was proposed in 1985 by Ma
(Ma, 1985, Ch. 25) as a ‘method (...) in the
stage of development’, to be used in Statistical
Mechanics. The author also discusses an inter-
esting link between information theory and sta-
tistical mechanics, in which he points out that
‘In information theory the number of symbols is
very small and each symbol is used many times’ so
that probabilities ‘can be accurately determined.’
It was certainly the common perception by the
time his book was written. Nonetheless, in some
hard problems involving blocks of symbols, such
as Multiple Input / Multiple Output digital sys-
tems, even small sets of symbols may lead to prob-
lems of entropy estimation with a huge number of
states, not to mention Symbolic Dynamics to men-
tion Symbolic Dynamic analysis in new challeng-
ing problems such as Data Mining in databases
with a large number of attributes. In other words,
nowadays, Ma-like methods can be appropriate for
a myriad of very relevant problems beside statis-
tical mechanics.

Thus, instead of counting coincidences of each
symbol, as in histogram-based approaches, we ad-
dress entropy estimation by detecting any coinci-
dence of symbols. For memoryless random sources
of symbols, this unconstrained coincidence detec-
tion is closely related to the classical ‘Birthday
Problem’, presented in textbooks of probability
(Papoulis and Pillai, 2002). By generalizing this
problem, let K be the number of equiprobable
symbols, if they are drawn from this source, the
probability of repeating one or more symbols by
the n-th sample is given by:

F (n;K) = 1−
K(K − 1)(K − 2) . . . (K − n+ 1)

Kn

(3)
were n = 1, 2, . . . ,K and K plays the role of a
parameter for this accumulated probability distri-
bution. Therefore, the probability of a first coinci-
dence precisely at the n-th sample, for 1 < n ≤ K,
is given by f(n;K) = F (n;K)−F (n− 1;K). We
can further estimate the average number of sam-
ples drawn from the source until a first coincidence
occurs as:

D(K) =

K
∑

n=0

nf(n;K) (4)

which clearly depends on K. For instance, in
the Birthday Problem itself, considering K = 365
days, on average, we shall expect one birthday
coincidence roughly every 24 independently con-
sulted subjects. Figure 4 graphically presents D
as a function of K, from K = 2 to K = 2000. By
inverting the axis in Figure 4, we can see a strik-
ing quadratic functional dependence of K on D.
Indeed, by adjusting the polynomial model:

K̂(D) = aD2 + bD + c (5)

Figure 4: Averaged number of symbols, D, drawn
from a source of K equiprobable symbols until a
first coincidence occurs.

through squared error minimization, we obtain
a = 0.6366, b = −0.8493 and c = 0.1272, which
yields a Mean Squared Error between K and K̂
of about 10−6, inside the interval D(1) = 2 to
D(2000) ≈ 56.7. This polynomial approximation
is a key aspect of our simplified method.

On the other hand, in Shannon’s definition
of entropy, as well as in Rényi’s generalization,
whenever all the K symbols of a memoryless ran-
dom source are equiprobable, the source entropy,
in bits, equals log2(K). In other words, the en-
tropy, H , of a given non-equiprobable source in-
forms us that there is an “equivalent”source of 2H

equiprobable symbols. By keeping this in mind,
we now may consider again non-equiprobable
sources of symbols. Clearly, we still may empir-
ically estimate D̂ by sequentially observing sym-
bols and averaging the number of symbols between
coincidences. Although the sources are no longer
equiprobable, the measured D̂ does still point out
a hypothetical equiprobable source of K̂ symbols
that could provoke the very same average inter-
val until first coincidence. Therefore, we should
expect K̂ ≈ 2H .

As a result, our very pragmatic method for
entropy estimation was summarized in three steps:

1 Estimate D by sequential observation of sym-
bols, as illustrated in Figure 5, thus obtaining
a D̂ that can be gradually refined.

2 Compute K̂(D̂) = aD̂2 + bD̂ + c, with a =
0.6366, b = −0.8493 and c = 0.1272.

3 Estimate the entropy of the memoryless
source, in bits, as Ĥ = log2(K̂).

To illustrate this method at work, we chose
the emblematic source of 365 equiprobable sym-
bols from the Birthday Problem, and measured
its bias in several scenarios. In this case, the
known source entropy is H = log2(365) = 8.5118
bits, for the second column in Table 1, where this
(equiprobable) source was simulated and D̂ was
obtained through the observation of N sequential
symbols (with at least one coincidence). Then, we



Figure 5: Incremental estimation of the averaged
number of symbols until coincidence detection,
where D1 = 6 and D2 = 5.

applied the proposed method and calculated the
bias Ĥ−H for 104 independent trials. Similarly, in
the third column, we present the average bias for
sources whose probability distributions were ran-
domly generated (thus yielding H ≤ log2(365)).

Table 1: Average estimation of relative biases
(

Ĥ−H
H

)

, for memoryless

sources of K = 365 symbols, after N sequential
observations.

N Average relative bias Average relative bias

(uniform distribution) (random distributions)

50 -0.042 -0.046

70 -0.022 -0.033

90 -0.014 -0.028

100 -0.013 -0.028

200 -0.005 -0.021

500 -0.002 -0.018

1000 -0.001 -0.015

It is worth noting that even for only 50 sym-
bols (i.e., much less than the cardinality of the set,
K = 365) the average absolute bias is not greater
than 5% of the actual entropy of the equiproba-
ble source. Moreover, it is also noteworthy that,
for stationary sources of symbols, the value of D̂
can be iteratively improved, even when K is not
known.

2 Proposed Method for Normalized AMI

Estimation

Given a finite sequence of symbols, xL
1 , for ev-

ery integer τ (|τ | << L), a new sequence yL−τ
1

is formed by symbol concatenation, so that yn =
xn ⊕ xn+|τ |, where ⊕ stands for symbol concate-
nation operator. Consequently, yn ∈ S × S. This
step is illustrated in Figure 6.

The proposed method is based on the aver-
aged number of symbols until a first coincidence
occurs in both x and y, but a very important as-
pect of our method is that it assumes that sym-
bols are independently drawn. Evidently, this is
not true for sequences where estimation of AMI is
worth it (exactly because of its ’memory’). There-

fore, we include a step corresponding to the ran-
dom permutation of both x and y, thus yielding
two ’white’ sequences, x, y, as illustrated in Fig-
ure 7. Accordingly, the proposed method for AMI
estimation can be implemented through the fol-
lowing algorithm:

1 Given a sequence xL
1 , for every τ (|τ | << L),

obtain a new sequence yL−τ
1 , formed by sym-

bol concatenation (yn = xn⊕xn+|τ |) (see Fig-
ure 6).

2 Randomly permute xL
1 and yL−τ

1 to obtain x
L
1

and y
L−τ
1 , respectively (see Figure 7).

3 Estimate Dx and Dy, respectively, by se-
quential observation of coincidences in x

L
1 and

y
L−τ
1 , respectively, as illustrated in Figure 5,

thus obtaining D̂x and D̂y.

4 Compute K̂x(D̂) = aD̂2
x + bD̂x + c and

K̂y(D̂) = aD̂2
y + bD̂y + c, with a = 0.6366,

b = −0.8493 and c = 0.1272.

5 Estimate entropies, in bits, as Ĥx = log2(K̂x)
and Ĥy = log2(K̂y).

6 Estimate NAMI(τ) = (2Ĥx − Ĥy)/Ĥx.

Figure 6: Synthesis of sequence y for τ = 2.

Figure 7: Random permutation of symbol se-
quences followed by estimation of average interval
between coincidence detections.

To illustrate the performance of this proposed
method, we recall that the rugged line in Figure
3 corresponds to the NAMI estimated for a sin-
gle sequence of 4000 symbols from the Markovian



source ’On-Off’. The rugged effect comes as a con-
sequence of that most symbols are ’discarded’ in
a single run of the method. In other words, un-
like histograms, where every symbol observed is
taken into account, our method discards symbols
between coincidences. However, this can be easily
compensated for, as a single sequence of L sym-
bols allows up to L! random permutations (step
2 of the method); therefore, just by moving back
to this step 2 a few times and averaging obtained
results allows a smoothing of the NAMI curve, as
illustrated, in Figure 8, for the very same sequence
of 4000 symbols from the source ’On-Off’.

Figure 8: Smoothing effect of multiple permuta-
tions – Source ’On-Off’, with pab = pba = 0.05.

3 Oversimplified version of the proposed

Method for AMI Estimation

Estimation of NAMI(τ) = (2Ĥx − Ĥy)/Ĥx (or

NAMI(τ) = 2 − Ĥy/Ĥx), in our method, en-
tirely relies upon average observation of intervals
between symbol coincidences, D̂x and D̂y, in two
sequences. By keeping simplicity as leitmotiv, we
can push even further the polynomial approxi-
mation of K̂(D), in Equation 5. Indeed, since
≈ (0.6366D2 − 0.8493D + 0.1272) ≈ (D − 1)α,
with α ≈ 1.85 for values shown in Figure 4, we
can oversimplify the estimation by approximating

NAMI(τ) ≈ 2−
log2(D̂y − 1)

log2(D̂x − 1)
(6)

.

4 Results

To highlight the effect of the quadratic increase
(K2) of cardinality of the set from which sequence
y takes symbols, besides the ’on-off’ source with 2
states, we also use a ring-like Markov chain with
9 states (’Ring’ source), both already illustrated
in Figure 2.

As noticed in Figure 9, unlike the histogram-
based approach, our method does not adopt bias

compensation, and, consequently, is outperformed
by plug-in methods.

our method is not bias compensated, conse-
quently it is outperformed by plug-in methods.

Figure 9: Auto Mutual Information of Source
’Ring’, with pij = pji = 0.05, i 6= j, 4000 symbols
in each sequence. Presented results correspond to
the average AMI after 200 independent trial.

By contrast, in Figure 10, we observe that,
under data shortage (i.e. L = 100 whereas the
cardinality of the set from which y takes symbols
is K2 = 92) the coincidence-based approach is less
disturbed than the plug-in strategy.

Figure 10: Auto Mutual Information of Source
’Ring’, with pij = pji = 0.05, i 6= j and only 100
symbols in each sequence. Presented results cor-
respond to the average AMI after 200 independent
trial.

Finally, to illustrate the performance of the
oversimplified estimator, in Figure 11, we repeat
experiments with the ‘Ring’ source. In spite of
the exposed simplifications, we can see that, as
for the coincidence-detection based method, that
differences in the results are barely perceptible,
by comparison to results in Figure 9, also present-
ing a much less degraded performance under data
shortage than the plug-in approach (the stronger
performance degradation of the histogram-based
method is indicated with an arrow in Figure 11).



Figure 11: Auto Mutual Information of Source
’Ring’, with pij = pji = 0.05, i 6= j. Pre-
sented results compare the performances of the
histogram based approach to the Oversimplified
Method based on coincidence detection, highlight-
ing the strong degradation of the former under
data shortage.

5 Conclusions

In this brief work, we extended the application
of an entropy estimator based on coincidence to
Auto Mutual Information analysis. This proposal
has two main attractive aspects: (a) it is very
simple to use, for it is based on the observa-
tion of intervals between coincidences, and (b) it
is robust to data shortage, because entropy can
be estimated, through coincidence detection, even
when the number of available observations is less
than the symbol set cardinality. This robustness
was illustrated through experiments with simple
Markov sources.

Moreover, by keeping simplicity as leitmo-
tiv, we even oversimplified the estimator to an
expression where a direct comparison of inter-
vals between coincidences is explicit. We found
this result particularly interesting, from an intu-
itive point of view, because we now can think
of the Auto Mutual Information (hence of the
memory/inertia of a given dynamic translated into
symbols) as a simple comparison between (time
or space) intervals in a logarithmic scale. Note
also that the comparison of intensities in logarith-
mic scales is a quite human-like approach, being
part of human reasoning, which naturally raises
the possibility of existence of links between human
perception of memory/inertia and the oversimpli-
fied version of our NAMI estimator.

On the other rand, our results also show that,
in its current stage of development, our method
is not bias-free. Indeed, we are now working on
two main subjects: i) bias compensation and ii)
extension toward detection of coincidences defined
in continuous spaces.
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