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Abstract— The present work proposes an automatic ultrasonic signal classification system to classify weld
discontinuities in weld beads attaching metal plates of carbon steel. This system will be embedded into an
autonomous robot and it must operates in real time. The classification system has three components: a pre-
processing algorithm ultrasonic raw data conditioning; a Principal Component Analysis algorithm to extract
features from preprocessed ultrasonic signals; and a Support Vector Machine classifier. This system is trained
and tested with a signal database from A-scan ultrasonic simulator. This database contains signals with lack of
fusion welds and longitudinal cracks discontinuities besides defect-free welds. A performance comparison with a
Multilayer Perceptron based weld classification is carried out. As a result, the SVM based classification system
performs out MLP results around 6% for discontinuities welds.
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Resumo— Este trabalho propoe um sistema automatico de classificagao de sinais de ultrassom para identificar
descontinuidades em corddes de solda que unem placas de ago-carbono. Este sistema serd embarcado em um
rob6 autémono e deve operar em tempo real. O sistema de classificacdo tem trés componentes: um algoritmo de
pré-processamento para adequar os sinais de ultrassom para os demais componentes; um algoritmo de Anélise
de Componentes Principais para a extragdo de caracteristicas dos sinais de ultrassom pré-processados; e uma
Maéquina de Vetores de Suporte como classificador. O sistema é treinado e testado com uma base de dados
composta por sinais de A-scan para as descontinuidades de falta de fusdo e trincas longitudinais, além de sinais
para soldas sem defeito. Estes sinais de A-scan foram gerados por um programa de simulagao de testes de
ultrassom. E feita uma comparagao no desempenho da classificacdo deste sistema com outro sistema que utiliza
um classificador baseado em redes neurais artificiais to tipo Multilayer Perceptron. Tal comparagdo demonstra

que o desempenho da classificagao das descontinuidades melhorou em torno de 6%.

Palavras-chave— Reconhecimento de padrdes, méquinas de vetores de suporte, ensaios nao-destrutivos e

técnicas de ultrassom.

1 Introduction

The pulse-echo is the most commonly technique
used to nondestructive testing (NDT) of welded
structures, mainly for its simplicity and efficiency
(Veiga et al., 2005). In this technique, a piezo-
electric ultrasonic transducer is used to generate
ultrasonic waves which propagate through metal
plate. Thus, they are reflected by defect and re-
turn back to transducer surface. The same ul-
trasonic transducer receives the reflected waves
and converts them to electrical signals. These
signals, called A-scan signals, contain information
about type, size and orientation of weld defects
(Sambath et al., 2011).

The identification of weld defects on an A-
scan signal is a pattern recognition problem. It is
usually called wltrasonic pattern recognition (Song
et al., 2002). This problem is not a trivial task
and it must be done by experts. The results de-
pend on the experience and knowledge of those
experts (Seyedtabaii, 2012). Nevertheless, experts
are subject to mistake the identification. Thus, an
automatic ultrasonic signal classification system
(AUTSCS) to assist the inspector in that analy-
sis may improve the reliability of the inspection
process (Veiga et al., 2005).

Some researchers (Polikar et al., 1998; Song

et al., 2002; Sambath et al., 2011; Seyedtabaii,
2012) define three major tasks to such systems:
acquisition and preprocessing A-scan raw data;
feature extraction; and classification. The pre-
processing task normalizes the raw data signals
values to a suitable range for other tasks. The
feature extraction task is responsible to obtain at-
tributes from normalized A-scan signals. These
attributes must be able to characterize the flaws.
Finally, the classification task aims to analyze the
attributes from an A-scan signal and indicates one
from a known set of flaws. The algorithm that
implements a classification task is called classi-
fier. There are several approaches to build a classi-
fier, such as traditional statistical classifiers, rule-
base classifiers and learning-base classifiers, which
a typical example are artificial neural networks
(Song et al., 2002; Moura et al., 2004). Recently,
new approaches to build classifiers has been used
(Vieira et al., 2008; Papa et al., 2012).

This work proposes an AUTSCS to classify
defects in weld beads attaching metal plates of
carbon steel. This AUTSCS is capable to iden-
tify two classes of defects: lack of fusion (LF)
and longitudinal cracks (LC). Moreover, it also
identifies defect-free welds (ND). This AUTSCS
will be embedded into an autonomous robot which
will inspect weld beads of storage tanks of oil and



derivates. For that, the AUTSCS must be able to
classify defects in real time. The AUTSCS has the
following components: a preprocessing algorithm
that normalizes the A-scan raw data; a Principal
Component Analysis algorithm to feature extrac-
tion; and a learning-base classifier, using Support
Vector Machine (SVM) algorithm. The knowledge
database used to train and test the AUTSCS is ob-
tained with a simulation software. This software is
a ultrasonic testing called simSUNDT, developed
at the Dept. of Mechanics at Chalmers University
of Technology (Bovik and Bostrom, 1997; Wird-
elius, 2004; Persson and Wirdelius, 2010). To eval-
uate the AUTSCS, its performance is compared to
another AUTSCS, which uses the same algorithms
for preprocessing and feature extraction, but uses
a MultiLayer Perceptron (MLP) classifier.

This paper is organized as follows. Section 2
discusses how the knowledge database was assem-
bled by using simSUNDT software. Section 3
describes the methods for building the AUTSCS
architectures. Results obtained are presented in
Section 4 and concluding remarks are presented
in Section 5.

2 Knowledge database

2.1 Weld discontinuities

The American Welding Society (AWS) defines a
weld discontinuity as an interruption of the typ-
ical structure of a weldment (AWS, 2000). It is
considered to be a flaw when it does not meet any
requirement of a particular specification. Depend-
ing on the nature of their appearance, the weld
discontinuities can be divided into three groups
(AWS, 2000): (1) procedures/process discontinu-
ities, (2) metallurgical discontinuities and (3) base
metal discontinuities. This work was limited to
the study of only two types of discontinuities, lack
of fusion and longitudinal cracks, both belonging
to the class (1).

During the welding procedure, a lack of fusion
discontinuity appears when the weld metal does
not melt properly with the base metal. It can
also be called incomplete fusion. According AWS
(2000), normally they occur at interface between
weld metal and base metal (sidewall) or adjoining
weld beads (Figure 1). The main causes of its
appearance are insufficient welding current, lack of
access to all faces of the weld joint and insufficient
preweld cleaning.

The cracks discontinuities are define as a re-
sult of localized stresses that exceeds the ultimate
strength of the material (AWS, 2000). They can
be divided into hot cracks, which occur during so-
lidification, or cold cracks which occur in ambient
temperature when the weldment has been placed
in service. They can also be divided by its loca-
tion, which may be in the weld metal and on the

(b)

Figure 1: Lack of fusion examples (a) at sidewall
and (b) adjoining weld beads

base metal.

This research is limited to the study of cold
cracks which occur both in weld metal and base
metal along the weld bead (longitudinal cracks).
These cracks are mainly caused by material fa-
tigue.

2.2  Software simSUNDT

The software simSUNDT is a program which sim-
ulates the whole ultrasonic NDT procedure, gen-
erating the A-scan signals for defects insert into
a weld bead. It is described in Wirdelius (2004).
The simulator’s mathematical model is three di-
mensional and the ultrasonic probe scans the ob-
ject on a rectangular mesh. It can simulates tree
types of planar defects: rectangular cracks; circu-
lar cracks and strip-like cracks. The lack of fusion
defects were parameterized as circular cracks and
longitudinal cracks were parameterized as strip-
like cracks. The ultrasonic probe was parame-
terized with a circular shape (diameter of 5mm).
The software was configured for shear waves of
60° sonic beam incidence in the metal. The fre-
quency spectrum of electrical exciting pulse has
cossine square shape, with central frequency set
to 1.5 MHz and bandwidth set to 100%. The soft-
ware can simulate the weld bead and the corre-
sponding back scattered grain noise that is super-
posed to the defect signal that correlates better
to a real inspection situation (Persson and Wird-
elius, 2010). The weld metal and base metal were
set to steel. The geometry of weld used in this
research are showed in Fig. 2.

2.8 A-scan signal database

The A-scan signal database was built with the
largest gain signal of a simSUNDT simulation sec-
tion for LF and LC flaw classes. For this, we
performed 100 simulation sessions for each type
of defect. For defect-free welds, we taken all A-
scan signals with gain greater than -30 dB (0 dB
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Figure 2: Weld geometry

is the gain of A-scan signal generated by simula-
tor calibration process). This procedure gives us
an A-scan signal database with 100 A-scan sig-
nals for lack of fusion defects, 100 A-scan signals
for longitudinal cracks defects and 73 A-scan sig-
nals for defect-free welds. The raw A-scan signals
produced in the simulator sessions are sampled at
50 MHz, from 0 to 50 us. Therefore, all these sig-
nals have 2501 samples. Figure 3 shows an A-scan
example for each defect.
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Figure 3: A-scan signals examples: (a) LF, (b) LC
and (c) defect-free weld

3 Method

As previously mentioned in Sect. 1, an AUTSCS
executes three main tasks: acquisition and prepro-
cessing of raw data, feature extraction and classi-
fication. This section describes the methods ap-
plied in these three tasks to build the AUTSCS

used in this research.

3.1 Preprocessing raw data

The knowledge database described in Sect. 2 is
formed by raw A-scan signals. These are high-
frequency modulated signals whose envelopes have
information about defects. A method for envelope
extract is based on Hilbert Transform. For this,
it was used the hilbert function of MATLAB®.
Figure 4a shows the envelope signal of the A-scan
raw signal of Fig. 3a.
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Figure 4: (a) A-scan envelope signal and (b) the
envelope signal frequency spectrum

As showed in Fig. 4b (A-scan envelope sig-
nal frequency spectrum), the bandwidth of en-
velope signals are approximately 5 MHz. Thus,
these signals can be downsampling from 50 MHz
to 5 MHz without loss information and its size
decreases from 2501 to 251 samples. Finally, the
envelope A-scan signals amplitude are normalized
for maximum and minimum amplitude value by
taking the highest amplitude value to 1 and the
lowest value to 0.

3.2 Feature extraction

The feature extraction is a processing which an in-
put space is transformed to a feature space with re-
duced dimensionality (Haykin, 1998). The trans-
formation is designed such that the feature data
set keeps the information content of input data
set. From an statistical point of view, the PCA is
an effective technique for reducing dimensionality.
In fact, PCA is an invertible linear transformation



which maximizes variance decreasing rate. The
resulting vector components are orthogonal ones.

In this work, the classifiers were trained and
tested with two input data sets. The first input
data set is the normalized A-scan envelope signals
database, processed as described in Sect. 3.1. This
data set will be called from now as Raw Data Set
(RDS). In this set, each input data vector has 251
dimensions. The second input data set is the re-
sult of PCA processing on the RDS and will be
called from now as PCA Data Set (PCADS). This
PCA processing was performed by processpca func-
tion of MATLAB®. We used maxfrac=0.01 as ar-
gument to processpca function. With this value,
processpca function eliminates those principal com-
ponents that contribute less than 1% to the total
variation in the Raw Data Set. As a result, the
dimension of input data vectors are reduced from
251 to 19.

3.8 SVM classifiers

The Support Vector Machines is a category of uni-
versal feedforward network which can be used as
classifiers, like Multilayer Perceptrons and Radial
Basis Functions networks (Haykin, 1998). The
SVM learning process is based on statistical learn-
ing theory proposed by Vapnik (1995). From this
theory, SVM classifiers can provide a good gener-
alization performance.

The idea of a SVM is find an optimal hyper-
plane which separates positive and negative exam-
ples of a training data set with a maximum margin
of separation (Haykin, 1998). Thus, given a finite
training set of data-label pairs (x;,v;),7=1,..., N
with size N, where x; € R™ and y; € {—1,1}¥V,
the SVM solves the following optimization prob-
lem (Haykin, 1998):

N
N
‘{anl)ré §W W—i—C;& "
subject to y;(w' ¢(x;) +b) > 1—&,
and & > 0.

In the Eq. 1, ¢(e) is a function which maps
input data vector into a higher dimension space.
The vectors ¢(x;) in this space may be linearly
separable according Cover’s theorem. The sepa-
ration hyperplane is defined by w’ ¢(x) + b = 0,
where w is the vector (into the higher dimension
space) normal to the hyperplane and b is a bias.
The &; are called slack variables which measure
the derivation of the data points from their ideal
condition of pattern separability (Haykin, 1998)
and C' is a regularization parameter determined
experimentally by the user.

From optimization theory, Eq. 1 defines the
primal problem and deals with linear constraints
and a convex cost function. However, this prob-
lem can be rewrite using Lagrange multipliers

(Haykin, 1998), in pattern recognition systems
corresponding to the dual problem:

N
max E (67
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N
subject to Zaiyi =0,
i=1

and 0<o; <C,Vi=1,...,N.

It is not necessary to know ¢(e) function to
solve Eq. 2. The term ¢(x;) - ¢(x;) is a inner-
product and its calculation results to a scalar
value. Thus, only it is necessary to know how to
calculate K(Xi, Xj) = QZS(XZ) . d)(XJ) The I((XZ‘7 Xj)
is called inner-product kernel. The kernel function
must follow the Mercer’s theorem (Haykin, 1998).

In the present work, the SVM classifiers were
implemented using the LIBSVM library and its
interface to MATLAB®. The quadratic problem
of SVM is solve in LIBSVM using an Sequential
Minimal Optimization (SMO) like decomposition
method. This algorithm is described in Chang and
Lin (2011). The kernel function used was RBF one
(K (xi,%;) = exp(—7[xi = x;[*),7 > 0). To ob-
tain the best values to C' and v was used the grid-
search procedure with multifold cross-validation
method, described by Haykin (1998, p.239). The
grid-search procedure has used the LIBSVM cross-
validation internal mode configured for 3-folds.

3.4 Multilayer Perceptron classifiers

The MLP are the most widely studied and used
ANN classifier (Haykin, 1998; Zhang, 2000). The
MLP classifiers used in this work were imple-
mented using the Neural Network Toolbox" of
MATLAB®. To obtain a suitable number of neu-
rons from the hidden layer the 3-fold multifold
cross-validation method was used for model se-
lection (Haykin, 1998). The databases used to
training and test the MLP classifiers were the
same used to SVM classifiers. The MLP classifiers
had used these parameters: log-sigmoid trans-
fer function, Scaled Conjugate Gradient back-
propagation training algorithm (trainscg) and per-
formance goal was set to 0.01. Was choose the
MLP classifier with the best test success classifi-
cation rate (TSCR).

4 Results

The results presented in this section were obtained
by the same procedure. All classifiers were tested
20 times with the same data set. For each train-
ing/testing cycle the data set (RDS or PCADS)



was partitioned into training set (182 input vec-
tors) and testing set (91 input vectors). All values
presented are the mean values. The test success
classification rate (TSCR) is the relation between
the number of correctly predict data and the total
testing data.

After the grid-search procedure to obtain the
best values to C and ~, the TSCR mean values
obtained for SVM classifiers are shown in Tab. 1.

Table 1: Best SVM classifiers models chosen by
cross-validation method.

Classifier TSCR mean (%)
Model LF ND LC Over All
SVM (RDS) 85.23 | 100.0 | 89.02 90.58
SVM (PCADS) 95.19 | 100.0 | 85.77 93.01

After cross-validation method for model se-
lection of MLP classifiers, the best MLP model
selected for RDS has 251 neurons at input layer, 9
neurons at first hidden layer, 8 neurons at second
hidden layer and 3 neurons at output layer (251-
9-8-3). The best MLP model selected for PCADS
has 19 neurons at input layer, 6 neurons at first
hidden layer, 4 neurons at second hidden layer and
3 neurons at output layer (19-6-4-3). The TSCR
mean values obtained for MLP classifiers are pre-
sented in Tab. 2.

Table 2: Best MLP classifiers models chosen by
cross-validation method.

Classifier TSCR mean (%)
Model LF ND LC Over All
251-9-8-3 (RDS) 86.93 | 100.0 | 79.61 87.72
19-6-4-3 (PCADS) 87.23 | 99.80 | 87.34 90.64

By observing the values of Tab. 1 and Tab. 2,
we can assert:

e the SVM classifiers have improved classifica-
tion performance comparing with MLP clas-
sifiers. It confirms that a SVM classifier pro-
vide a better generalization performance than
a MLP classifier for this problem:;

e the PCA feature extraction has improved
classification performance too. The increase
in classification performance using PCA fea-
ture extraction was around 3%;

e the SVM classifier trained with RDS had
the same classification performance that the
MLP classifier trained with PCADS;

e the combination PCA feature extraction plus
SVM classifier have improved classification
performance around 6% comparing to MLP
classifier without feature extraction.

The Tab. 3 and Tab. 4 show the confusion ta-
bles to SVM and MLP classifiers. Both classifiers
did not have showed false negative results, but the

Table 3: Confusion table of SVM classifier (RDS).
Classifier output
LF ND LC Target

85.23 | 1.5 | 13.28 LF
0 100 0 ND

10.98 0 89.02 LC

Table 4: Confusion table of MLP classifier (RDS).

Classifier output

LF ND LC Target
86.93 | 2.71 | 10.37 LF
0 100 0 ND
14.7 5.7 79.61 LC

MLP classifier has showed 2.71% and 5.7% false
positive results to LF and LC defects, respectively.
The SVM classifier has showed better results, only
1.5% false positive result to LF defect.

Table 5: Elapsed times for tasks execution.

PCA Training Testing

algorithm algorithm process

(I\P/{IIISE) 0Os 2.821s 0.042s
(PI\C/JIEIISS) 0.092s 1.047s 0.042s
(i{\lf)l\g) 0Os 0.015s 0.009s
(P%\ﬁ\éS) 0.092s 0.006s 0.0006s

The Tab. 5 shows the elapsed times to exe-
cute the PCA feature extraction algorithm, the
training algorithm and the test process for all
AUTSCS tested in this work, excluding the time
to execute the grid-search procedure of SVM pa-
rameters. These tests were performed using a
PC with Intel® Core 2 Duo (2.4 GHz) proces-
sor and 8 GB RAM. As a result, the SVM clas-
sifiers have performed training and testing pro-
cesses much faster comparing to the MLP clas-
sifiers. The elapsed time to execute PCA feature
extraction algorithm was equal for both classifiers.
Its value is very small compared to the elapsed
time of training process for the MLP classifier, but
it is relatively high when compared to the elapsed
time of training process for SVM classifier. This
fact could be impeditive to use PCA feature ex-
traction algorithm in a real time system, but as
the absolute value of elapsed time is small (90ms),
other factors need be analyzed to validate the use
of the algorithm PCA.

5 Conclusions

In present study, we were built an AUTSCS to
identify lack of fusion, longitudinal cracks and
defect-free welds through pulse-echo ultrasonic
signals. The proposed AUTSCS will be embed-
ded into an autonomous robot to perform real
time flaw detection. The AUTSCS has used the



following preprocessing techniques: envelope sig-
nal extraction from A-scan signal, downsampling
from 50MHz to 5 MHz and normalization of am-
plitude values between 0 and 1. The feature ex-
traction method used in AUTSCS was the PCA
and the classifier was a SVM. The knowledge
database used to train and test the AUTSCS
was built using a simulation software for ultra-
sonic testing (simSUNDT). This AUTSCS got
a success classification rate of 93%. When this
AUTSCS was compared with a classic AUTSCS
which no feature extraction and with a MLP clas-
sifier, the classification performance was improved
around 6%. Regarding the elapsed time to exe-
cute some AUTSCS processes, the SVM classifier
was much faster than MLP classifier, which rein-
forces the choice of the SVM classifier for this sys-
tem. The PCA feature extraction algorithm con-
tributed positively in reducing the training time of
the MLP classifier. However, it did not occur in
the SVM classifier because the decrease in training
process time was shorter than the PCA algorithm
processing time. Nevertheless, only the PCA fea-
ture extraction contributed to improve the clas-
sification performance on both classifiers around
3%. Thus, this study demonstrates that the use
of PCA feature extraction method in combination
with a SVM classifier leads to fair results of classi-
fication performance and significant improvement
in the elapsed time to execute the tasks for train-
ing and use of the classifier.
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