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Abstract— The concept of fuzzy sets and fuzzy logic is widely used to propose of several methods applied to
systems modeling, classification and pattern recognition problem. This paper proposes a genetic-fuzzy recognition
system for speech recognition. In addition to pre-processing, with mel-cepstral coefficients, the Discrete Cosine
Transform (DCT) is used to generate a two-dimensional time matrix for each pattern to be recognized. A genetic
algorithms is used to optimize a Mamdani fuzzy inference system in order to obtain the best model for final
recognition. The speech recognition system used in this paper was named Intelligent Methodology for Speech
Recognition(IMSR). Experimental results for speech recognition applied to brazilian language show the efficiency
of the proposed methodology compared to methodologies widely used and cited in the literature.

Keywords— Fuzzy Systems; Automatic Speech Recognition; Genetic Algorithms; Discrete Cosine Transform;
Instelligent System.

Resumo— O conceito de conjuntos nebulosos e lógica nebulosa é largamente utilizado no desenvolvimento de
diversos métodos aplicados a sistemas de modelageme problemas e classificação e reconhecimento de padrões.
Este artigo propõem uma metodologia Genético-Nebulosa para reconhecimento de padrões. Somando-se ao pré-
processamentos com coeficientes mel-cepstrais, utiliza-se a Tranformada Cosseno Discreta (TCD) para gerar uma
matriz temporal bidimensional para cada padrão a ser reconhecido. O algoritmo genético é utilizado para otimizar
o sistema de inferência nebuloso do tipo Mamdani com o objetivo de melhorar o modelo final maximizando a
quantidade de acertos de reconhecedor. O sistema de reconhecimento de voz usado neste artigo denomina-se
‘Intelligent Methodology for Speech Recognition’. Resultados experimentais do sistema proposto com os d́ıgito
da ĺıngua portuguesa mostram a eficiência do metodologia proposta quando comparada a outras metodologias
largamente usadas e citadas na literatura.

Keywords— Sistemas Nebulosos, Reconhecimento Automático de Voz; Algoritmos Gnéticos; Transformada
Cosseno Discreta; Sistemas Inteligentes.

1 Introduction

The goal of an Automatic Speech Recognition Sys-
tem (ASR) is to accurately and efficiently convert
a speech signal into a mathematic coding of the
spoken words, independent of the device used to
record the speech (i.e., the transducer or micro-
phone), the speakers accent, or the acoustic en-
vironment in which the speaker is located (e.g.,
quiet office, noisy room, outdoors). That is, the
ultimate goal, which has not yet been achieved, is
to perform as well as a human listener.

Parameterization of an analog speech signal
is the first step in speech recognition process.
Several popular signal analysis techniques have
emerged as standards in the literature. These
algorithms are intended to produce a perceptu-
ally meaningful parametric representation of the
speech signal: parameters that can emulate some
behavior observed in human auditory and percep-
tual systems. Actually, these algorithms are also
designed to maximize recognition performance
(Picone, 1991).

The selection of the best representation for
parametric speech signal is a very important task
of developing any speech recognition system. The
goal of selecting the best way to encode the sig-
nal is to compress the speech data information,

eliminating non-phonetic analysis of the signal
and improving the aspects of the signal which
contribute significantly to detect phonetic differ-
ences of speech sounds . We follow here the for-
malism developed by Andrews (Andrews, 1971).
The problem of pattern recognition might be for-
mulated as follows: Let Sk classes, where k =
1,2,3...K, and Sk ⊂ ℜn. If any pattern space is
take with dimension ℜx, where x ≤ n, it should
transform this space into a new pattern space with
dimension ℜa, where a < x ≤ n. Then assuming a
statistical measure or second order model for each
Sk, through a covariance function represented by
[

Φ
(k)
x

]

, the covariance matrix of the general pat-

tern recognition problem becomes:

[Φx] =

K
∑

k=1

P (Sk)
[

Φ(k)
x

]

(1)

where P (Sk) is a distribution function of the class
Sk, a priori, with 0 ≤ P (Sk) ≤ 1. A linear trans-
formation operator through the matrix A maps
the pattern space in a transformed space whose
columns are orthogonal basis vectors of this ma-
trix A. The patterns of the new space are linear
combinations of the original axes as structure of
the matrix A. The statistics of second order in



the transformed space are given by:

ΦA = AT [Φx]A (2)

where ΦA is the covariance matrix which corre-
sponds to the space generated by the matrix A

and the operator [·]T corresponds to the transpose
of a matrix. Thus, it can extract features that
provide greater discriminatory power for classifi-
cation from the dimension of the space generated
(Andrews, 1971).

In this proposal, a speech signal is encoded
and parameterized in a two-dimensional time ma-
trix with four parameters of the speech signal.
After coding, the mean and variance of each
pattern are used to generate the rule base of
Mamdani fuzzy inference system. The mean
and variance are optimized using genetic algo-
rithm in order to have the best performance
of the recognition system. This paper con-
sider as patterns the brazilian locutions (digits):
′0′,′ 1′,′ 2′,′ 3′,′ 4′,′ 5′,′ 6′,′ 7′,′ 8′,′ 9′.

2 A Hybrid-Intelligent Methodology for

Speech Recognition

The proposed Recognition System Block Diagram
is depicted in Fig.1.
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Figura 1: Block diagram of the proposed
recongnition system.

2.1 Pre-processing Speech Signal

There is no standard set of features for speech
recognition. Instead, various combinations of
acoustic, articulatory, and auditory features have
been utilized in a range of speech recognition sys-
tems. The most popular acoustic features have
been the (LPC-derived) mel-frequency cepstrum
coefficients and their derivatives. Initially, the
speech signal is digitizing, divided in segments,
windowed and encoded in a set of parameters de-
fined by the order of mel- frenquency cepstrum co-
efficients (MFCC). The DCT coefficients are com-
puted and the two-dimensional time DCT matrix
is generated, based on each speech signal to be
recognized.

2.2 Two-Dimensional Time Matrix DCT Co-

ding

In the encoding stage is used a DCT feature ex-
tractor to remove unwanted additional data from

the speech samples. Thus, the speech frames are
transformed into a DCT space. The DCT-II-E
coefficients, as defined in (Chen and Zhou, 2009),
and used in this paper, are computed by following
relation

X(k) =

N−1
∑

n=0

α(n)x(n)cos
(2k + 1)nπ

2N
(3)

k = 0, 1, 2, ..., N − 1, n = 0, 1, 2, ..., N − 1, x(n) is
a vector of real numbers and

{

α(n) =
√

1/N, if n = 0

α(n) =
√

2/N, else

The two-dimensional time matrix, as the re-
sult of DCT in a sequence of T observation vec-
tor mel-cepstral coefficients observation vectors on
the time axis, is given by:

Ck(n, T ) =
1

N

T
∑

t=1

mfcck(t)cos
(2t− 1)nπ

2T
(4)

where mfcc(.) are the mel-frequency cepstral co-
efficients, k, 1 ≤ k ≤ K, is the k-th (line) compo-
nent of t-th frame of the matrix and n, 1 ≤ n ≤ N
(column) is the order of DCT. Thus, the two-
dimensional time matrix, where the interesting
low-order coefficients k and n that encode the
long-term variations of the spectral envelope of
the speech signal is obtained. Thus, the two-
dimensional time matrix Ck(n, T ) for each input
speech signal. For simplification Ck(n, T ) will be
represented by Ckn. The elements of the matrix
are obtained as follows:

1. For a given spoken word P (digit), ten
examples of utterances of P are got-
ten. This way it has itself P 0

0 ,P
0
1 ,...,P

0
9 ,

P 1
0 , P 1

1 ...,P
1
9 ,P

2
0 ,P

2
1 ,...,P

2
9 ,...,P

j
m, where j ∈

{0, 1, 2, ..., 9} is the pattern to be recognized
and m ∈ {0, 1, 2, ..., 9} is an exemple of the
pattern to be recognized.

2. Each frame of a given example of the word
P generates a total of K mel-cepstral co-
efficients and the significant features are
taken for each frame along time. The N-

th order DCT is computed for each mel-
cepstral coefficient of same order within
the frames distributed along the time axis,
i.e., c1 of the frame t1, c1 of the frame
t2, ..., c1 of the frame tT , c2 of the frame
t1, c2 of the frame t2, ...,, c2 of the
frame tT , and so on, generating elements
{c11, c12, c13, ..., c1N}, {c21, c22, c23, ..., c2N},
{cK1, cK2, cK3, ..., cKN} of the matrix given
in equation (4). Therefore, a two-dimensional
time matrix DCT is generated for each exam-
ple of the word P.

3. Finally, the matrices of mean CM j
kn (5) and

variances CV j
kn(6) are generated. The para-



meters of CM j
kn and CV j

kn are used to pro-

duce Gaussians matrices Cj
kn which will be

used as fundamental information for imple-
mentation of the fuzzy recognition system.
The parameters of this matrix will be opti-
mized by genetic algorithm.

CM j
kn =

1

M

M−1
∑

m=0

Cjm
kn (5)

CV
j

kn
(var) =

1

M − 1

M−1
∑

m=0

[

C
jm

kn
−

(

1

M

M−1
∑

m=0

C
jm

kn

)]2

(6)

2.3 Generation of Fuzzy Patterns

The elements of the matrix Cj
kn were used to

generate gaussians membership functions in the
process of fuzzification. For each trained model
j the gaussians memberships functions µ

c
j

kn

are

generated, corresponding to the elements cjkn of

the two-dimensional time matrix C
j
kn with j =

0.1, 2, 3, 4, 5, 6, 7, 8, 9, where j is the model used
in training. The training system for generation
of fuzzy patterns is based on the encoding of the
speech signal s(t), generating the parameters of
the matrix Cj

kn. Then, these parameters are fuzzi-
fied, and they are related to properly fuzzified out-
put yj by the relational implications, generating
a relational surface µ(Ru), given by:

µRu = µ
c
j

kn

◦ µyj (7)

This relational surface is the fuzzy system rule
base for recognition optimized by genetic algo-
rithm to maximize the speech recognition.

2.4 Fuzzy Inference System for Speech Recogni-

tion Decision

The decision phase is performed by a fuzzy in-
ference system based on the set of rules obtained
from the mean and variance matrices of Ckn of
all j − th spoken digit. In this paper, a matrix
with minimum number of parameters (2 × 2) is
used in order to allow a satisfactory performance
compared to pattern recognizers available in the
literature. The elements of the matrices Cj

kn are
used by the fuzzy inference system to generate
four gaussian membership functions correspond-
ing to each element cjkn

∣

∣

k=1,2;n=1,2 of the matrix.
The set of rules of the fuzzy relation is given by:

Rule Bases

IF cjkn
∣

∣

k=1,2;n=1,2 THEN yj (8)

Modus Ponens

IF c
′j
kn

∣

∣

k=1,2;n=1,2 THEN y
′j (9)

From the set of rules of the fuzzy relation between
antecedent and consequent, a data matrix for the
given implication is obtained. After the training
process, the relational surfaces is generated based
on the rule base and implication method (Zhou
and Khotand, 2007). The speech signal is encoded
to be recognized and their parameters are evalu-
ated in relation to the functions of each patterns
on the surfaces and the degree of membership is
obtained. The final decision for the pattern is
taken according to the max − min composition
between the input parameters and the data con-
tained in the relational surfaces. The process of
defuzzification for the pattern recognition is based
on the mean of maxima (mom) method given
by:

µy
′j = µ

c
′j

kn

◦ µ(Ru) (10)

y
′

= mom(µ
y
′j ) = mean{y|µ

y
′j = maxy∈Y (µ

y
′j )} (11)

2.5 Optimization of Relational Surface with Ge-

netic Algorithm

The continuous genetic algorithm is configured
with a population size of 100, generations of
300, with mutations probability of 15% and two
individuals (chromosomes) with 40 genes each,
to optimize a cost function with 80 variables,
which are the mean and variances of the pat-
terns (digits) to be recognized by the proposed
fuzzy recognition system. The genetic algorithm
was used to optimize the variations of mean and
variances of each pattern in order to maximize
the successful recognition process. For each el-
ement of the matrix Cj

kn coefficients are deter-
mined with variations minimum and maximum,
and the coefficient c11 ∈ [c11(min) c11(max)], c12
∈ [c12(min) c12(max)], c21 ∈ [c21(min) c21(max)],
c22 ∈ [c22(min) c22(max)]. Thus, it has eight time
varying parameters for each pattern which corre-
spond to eighty parameters to be optimized by
genetic algorithm (Weihong et al., 2010).

3 Experimental Results

3.1 System Training

The patterns to be used in the recognition process
were obtained from ten speakers who are speak-
ing the digits 0 to 9. After pre-processing of the
speech signal and fuzzification of the matrix Cj

kn,
its fuzzifieds components µ

c
j

kn

had been optimized

by the GA that maximize the total of successful
recognition. The optimization process was per-
formed with 50 realizations of the genetic algo-
rithm.The best result of the recognition process-
ing is shown in Fig.2. The total number of hits
using GA was 94 digits correctly identified in the
training process from a total of 100 spoken digits.
The relational surface generated for this result was
used for validation process.
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Figura 2: Plot of the best results obtained in the
training process.

The best individual in the first generation is
shown in Fig.3. In this case the total number of
correct answers was 46 digits correctly identified.
The relational surface of the best individual in the
first generation is shows in Fig.4.
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Figura 3: Membership functions for cjkn in the 1st
generation.

Figura 4: Relational surface (µRu) in the 1st
generation.

The optimum individual, presents the features
in Fig.5 and Fig.6.

3.2 System Test - Validation

In this step, 100 locutions uttered in a room with
controlled noise level and 500 locutions uttered in
an environment without any kind of noise control
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Figura 5: Membership functions for cjkn optimized by
GA.

Figura 6: Relational surface (µRu) optimized by GA.

were used. For every ten examples of each spoken
digit, two-dimensional time matrix cepstral coef-
ficients Cj

kn was generated and they were used in
the test procedure in which six types of tests were
performed: Training: Recognition Optimized by
IMSR (5 Female and 5 Male Speakers);
TEST 1: Validation - Strictly speaker dependent
recognition, in which the words used for training
and testing were spoken by a same group of 10
speakers (5 Female and 5 Male Speakers);
TEST 2: Validation test- Recognition based on
the partial dependence of the speaker with 20% of
the digits spoken (Female Speaker);
TEST 3: Validation test- Recognition based on
the partial dependence of the speaker with 20% of
the digits spoken two examples (Male Speaker);
TEST 4: Validation test- Recognition indepen-
dent of the Speaker, where the speaker does not
have influence in the training process (Female
Speaker);
TEST 5: Validation test- Recognition indepen-
dent of the Speaker, where the speaker does
not have influence in the training process (Male
Speaker);

In the Figures 7 to 12 presents the compara-
tive analysis of the HMM with two, three and four
states, two, three and four gaussians mixtures by
state and order analysis equal 12, i.e., the number
of mel-cepstral parameter equal 12 to HMM and
the Intelligent Methodology for Speech Recogni-



tion(IMSR) with two, three and four mel-cepstral
parameter for speech recognition. With the data
points obtained experimentally, a fit curve for all
tests was mapped, and the amount of parameters
needed to obtain 100% accuracy is estimated by
these curves with two tested recognizers. As de-
picted in Fig.7, with two mel-cepstral parameters,
a number of hits equal to 94% is obtained. With
three parameters to 98% and 99% with a total
of four mel-cepstral parameters. Thus, through
the fit curve, a total of 100 % accuracy can be
reached, since that tuned properly the parame-
ters of the genetic algorithm. In the Fig.8 and
Fig.9 is shown an estimate of 100% accuracy with
approximately 5 mel-cepstral parameters. In the
Fig.10 is shown an estimate of 100% accuracy
with a total of 7 mel-cepstral parameters. It is
noteworthy that these results are strictly speaker
dependent (Fig.8) and with partial speaker de-
pendence, respectively (Fig.9 and Fig.10). In the
Fig.11 and Fig.12, where tests are independent of
the speaker gets a higher estimate of the number
of mel-cepstral parameters 7 and 16, respectively,
to reach the 100% accuracy.
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Figura 7: Results in the training.
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Figura 8: Validation Test 1.

Experimental results and mel-cepstral param-
eter were presented in Table 1 for tests performed
in this paper.From data obtained, it is observed
that even with a lower number of parameters, re-
sulting from the encoding of the speech signal,
similar results are obtained and are compared with
methodologies more complex with a larger num-
ber of parameter.
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Figura 12: Validation Test 5.

Tabela 1: Results for Proposed Methodology

IMSR IMSR IMSR IMSR IMSR IMSR IMSR
Parameters Traning Test-01 Test-02 Test-03 Test-04 Test-05

MFCC=2, DCT=2 94 92 82 86 68 65

MFCC=3, DCT=3 98 96 84 91 70 68

MFCC=4, DCT=4 99 97 95 92 84 70

(Estimate)MFCC=4, DCT=4 100 - - - - -

(Estimate)MFCC=5, DCT=5 - 100 - - - -

(Estimate)MFCC=5, DCT=5 - - 100 - - -

(Estimate)MFCC=7, DCT=7 - - - 100 - -

(Estimate)MFCC=7, DCT=7 - - - - 100 -

(Estimate)MFCC=16, DCT=16 - - - - - 100

3.3 Comparison with other intelligent methods

The goal with this comparison is to show that
the proposed method, even with a minimal num-



ber of input parameters, produces similar results
comparable with other intelligent techniques with
a substantial amount of input data. For this
comparison the results presented in the article
(Silva et al., 2010) were used. The work cited
(Silva et al., 2010) use the same patterns used
in proposed work, i.e, brazilian locutions (dig-
its). The database used in (Silva et al., 2010),
consists of spoken digits in portuguese collected
during a period of three months, from eighty-two
men aged between 18 and 42 years-old. The sam-
pling rate of the recording is 22050Hz. Altogether,
the database has 216 sequences of 10 digits (0 -
9) each, totalling 10 classes and 2160 examples.
Thus, it is a balanced dataset considering the class
distribution. That it uses a MFCC with 13 coef-
ficients and line spectral frequencies with orders
24 and 48. In the proposed methodology, it is
use a IMSR com order 2, 3 and 4, with a amount
of 4, 9 and 16 input data for the recognition. In
the Table 2 there are describ scenarios used by
(Silva et al., 2010) and in the Table 3 there are de-
scribed the obtained results in the work perfomed
by (Silva et al., 2010) for comparasion.

Tabela 2: Description of the scenarios of the
experiments performed by (Silva et al., 2010)

Scenario Inducer/Settings

1-NN Nearest Neibor

5-NN 5- Nearest Neighbor weighted by inverse distance (one)

7-NN 7- Nearest Neighbor weighted by inverse distance

9-NN 9- Nearest Neighbor weighted by inverse distance

SVM-Poly1 Suport Vector Machine with Polynomial Kernel with Degree 1

SVM-Poly2 Suport Vector Machine with Polynomial Kernel with Degree 2

SVM-Poly3 Suport Vector Machine with Polynomial Kernel with Degree 3

SVM-RBF0.01 Suport Vector Machine with RBF Kernel with Gamma =0.01

SVM-RBF0.05 Suport Vector Machine with RBF Kernel with Gamma =0.05

SVM-RBF0.1 Suport Vector Machine with RBF Kernel with Gamma =0.1

NB Naive Bayes

RF Random Forest

Tabela 3: Mean accuracy for three analyzed methods
on 12 scenario performed by (Silva et al., 2010)

Scenario MFCC 24LSF 48 LSF

1-NN 86.33 92.92 93.03

5-NN 89.52 95.57 95.66

7-NN 89.61 95.82 95.98

9-NN 90.20 96.13 95.67

SVM-Poly1 97.96 98.85 99.30

SVM-Poly2 97.88 98.77 99.31

SVM-Poly3 97.91 98.75 99.17

SVM-RBF0.01 93.62 97.93 98.64

SVM-RBF0.05 96.88 98.54 98.70

SVM-RBF0.1 97.19 98.32 98.02

NB 90.63 94.86 94.72

RF 91.83 96.36 95.89

4 Conclusion

Evaluating the results, it is observed that the
proposed speech recognizer, even with a minimal
number of parameters in the generated patterns,
was reliably able to extract the temporal charac-
teristics of the speech signal and produce good
recognition results compared with the traditional
HMM. To obtain equivalent results with HMM
is necessary to increase the state number and/or
mixture number. In tests performed by the au-
thors it was verified that an increase in the order

of the analysis above 12 does not improve signifi-
cantly the performance of HMM. Other intelligent
techniques, such as neural networks, svm, or hy-
brid intelligent techniques, can achieve good re-
sults in speech recognition, however, they usually
suffer from the curse of dimensionality, with a high
number of parameters and a heavy computational
load. The proposed methodology can work with
a small number of parameters, maintaining a rea-
sonable number of hits, which indicates its ability
to discard redundant information not necessary to
the process of recognition. It is believed that with
proper treatment of the signal to noise ratio in
the process of training and testing, the proposed
speech recognizer may improve its performance:
Increase the speech bank with different accents,
the use Nonlinear Predictive Coding for feature
extraction in speech recognition, the use digital
filter in the speech signal to be recognized and
increase the parameters number used.

Acknowledgment

The authors would like to thank FAPEMA, re-
search group of computational intelligence applied
to technology at the Federal Institute of Educa-
tion, Science and Technology of the Maranhão and
Master and PhD program in Eletrical Engineering
at the Federal University of Maranhão (UFMA).

Referências

Andrews, H. (1971). Multidimensional Rotations

in Feature Selection, IEEE Transaction on
Computers.

Chen, P. and Zhou, J. (2009). Generalized Dis-

crete Cosine Transform, Pacific-Asia Confer-
ence on Circuits,Communications and Sys-
tem.

Picone, J. (1991). Signal modeling techiniques

in speech recognition, vol.79, 2ed. edn, IEEE
Transactions on Computer.

Silva, D., de Souza, V., Batista, G. and Giusti,
R. (2010). Spoken Digit Recognition in

Portuguese Using Line Spectral Frequencies,
vol.45, no01 edn, Lectures Notes in Artifi-
cial Intelligence-LNAI 7637. Springer-Verlag
Berlin Heidelberg.

Weihong, Z., Shunqing, X. and Ting, M. (2010).
A Fuzzy Classifier Based on Mamdani Fuzzy

Logic System and Genetic Algorithm, IEEE
Conference on Information Computing and
Telecommunications.

Zhou, E. and Khotand, A. (2007). Fuzzy Classifier

Design Genetic Algorithms, vol.18, no03 edn,
Pattern Recognition Journal-Elsevier.


