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Abstract— The Reinforcement Learning is a well known method for solving problems where the agent needs
to learn through direct interaction with the environment. However, this technique is not efficient enough, due to
its high computational cost. This work proposes and test the Reinforcement Learning accelerated by heuristics
obtained through demonstrations algorithm, in the domain of robotic navigation. Experiments were made in
simulated environment using software Player/Stage. Experimental results allowed to conclude that the proposed
algorithm can improve the learning performance, reducing significantly the number of steps needed to reach the
goal, when compared to the conventional Reinforcement Learning algorithms.
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1 Introduction

Robot’s learning ability has been pursued
by Artificial Intelligence (AI) researchers for sev-
eral years. Reinforcement Learning (RL) can be
quoted as one of the most usual type of learning
for this purpose.

RL is a Machine Learning method, in which
the agent can learn through interactions with
its environment, without any previous knowl-
edge (Sutton, 1988). Furthermore, Reinforce-
ment Learning allows the agent to learn in a un-
known environment via exploration. Depending
on its performance, the agent receives a reward or
penalty, that make the agent learns a set of ac-
tions to the optimal behavior. This set of actions
is called optimal policy (π∗).

The main issue concerning to the RL refers
to the large number of iterations needed by the
algorithm to converge, it means that the complete
learning process is very slow. So, methods are
needed to speed up the learning, even more when
this technique is used in the field of autonomous
mobile robots.

This work presents an efficient learning
method for autonomous mobile robots, to be
used in large and complex environments. Being
inspired by the learning split into two phases,
proposed by Smart and Kaelbling (2002), this
paper purposes the combination between the
Heuristically Accelerated Reinforcement Learning
(HARL) (Bianchi et al., 2008) and the Learning
from Demonstration (LfD)(Schaal, 1997), in order
to develop the Heuristics from Demonstrations to
Accelerate Reinforcement Learning (HfDARL) in
the domain of the autonomous mobile robotics.

This paper is organized as follows: sections 2
and 3 briefly reviews RL and some approaches to
speed up RL. Section 4 presents a review of the
LfD. Section 5 presents the proposal of this work.

The results obtained in the simulated environemnt
using software Player/Stage are shown in section
6. Finally, Section 7 provides the conclusions and
indicates avenunes by which the research proposed
in this paper can be extended.

2 Reinforcement Learning

RL algorithm works by using a scalar rein-
forcement signal r(s,a) (reward or penalty) that
is received by the agent in each state st update.
Each action at taken by the agent is defined in or-
der to maximize the total reward it receives, using
the knowledge obtained until the present moment
t.

One way to formalize the RL is the Markov
Decison Process (MDP), where the learning can
be modeled by a 4-tuple < S,A, T ,R >, S : is a
finite set of states; A : is a finite set of possible ac-
tions; R : S× A → < is a reinforcement function;
T : S × A → Π(S) is a state transition function,
being Π(S) the state transiction function mapping
probability.

The goal of the agent in RL is to learn an
optimal policy of actions which maximizes a func-
tion, therefore the MDP enables the mathematical
modeling of a RL agent.

Watkins (1989) proposed the algorithm Q-
Learning, that is considered one of the most pop-
ular RL algorithm. The goal of the Q-Learning
is to maximize the function Q for each state, in
which Q represents the expected return for taking
action a when visiting state s and following policy
π. The Q-Learning rule is:

Q(st, at) = Q(st, at) + α[r(st, at)+

γmax
at+1

Q(st+1, at+1)−Q(st, at)]
(1)

Where st is the current state; at is the action



Algorithm 1 Q-Learning

Initialize Q(s, a) arbitrarily
Repeat

Visit state s
Select an action a according to the action
choice rule.
Execute the action a
Receive the reward r(s, a) and observe the
next state s′

Update the values of Q(s, a) according to the
Q-Learning rule:
Q(s, a) ← Q(s, a) + α[r(s, a) +
γmaxa′ Q(s′, a′)−Q(s, a)]
Update the state s← s′

Until s is terminal

Where s′ is the next state and a′ is the action
performed in s′

performed in st; r(st, at) is the reward received
after taken at at st; st+1 is the new state; at+1

is the action performed in st+1; γ is the discount
factor (0 ≤ γ < 1); and α is the learning rate
(0 < α < 1).

A common strategy adopted to chose the ac-
tions during the exploration process is known as
ε–Greedy. This strategy pursues the action that
results in the higher value to Q with probability
1− ε.

The ε–Greedy action choice rule, can be writ-
ten as:

π(st) =

{
arandom if q 6 ε,
arg maxat

Qt(st, at) otherwise.
(2)

Where q and ε are parameters that define the
exploration/exploitation tradeoff; and arandom is
an action randomly chosen among those available
in state st.

The complete Q-Learning is shown in algo-
rithm 1.

3 Accelerating Reinforcement Learning

Among a large number of methods for speed
up RL, two are important to the development of
this work. The first one is the spatial generaliza-
tion and the second one is the use of heuristics.

Using the spatial spreading concepts, Ribeiro
and Szepesvari (1996) proposed the QS algorithm
which is a Q-Learning algorithm combined with
spatial spreading of action values. The goal of
the QS is to spread the function Q(s, a) to others
state-action pairs (x, u) not involved into the cur-
rent iteration, respecting some similarity criteria.
The spreading is defined by some prior domain
knowledge.

In order to simplify the domain knowledge in-
serction, Pegoraro (2001) proposed the QSx al-

gorithm that is, basically, the QS algorithm with
knowledge inserction by using similarity degrees.

The spreading function that defines the simi-
larity among the state-action pairs is represented
by the equation 3.

σ(s, a, x, u) = τn (3)

Where n is the diversity degree among the
state-action pairs; and τ is the similarity factor
(0 6 τ 6 1).

The similarity among the state-action pairs
can be defined by several ways, like by connec-
tivity, by neighborhood and by symmetry. Some-
times, it is also necessary to restrict the similarity
to a region of the domain.

The similarity by connectivity can be defined
through the number of actions needed to take
the agent from state s to x. Thereby, this sim-
ilarity can be molded as fx(x, s) = τna , where
na is the minimum number of actions needed to
go from s to x. The similarity by neighborhood
considers that positions topologically close from
each other can be defined as similar. The simi-
larity by neighborhood function can be written as
fx(x, s) = τds,x , where ds,x represents the distance
between states s and x. Finally, in the similarity
by symmetry, an experience performed in the state
s can be reflected to the state x, since these states
are simmetryc (Pegoraro, 2001).

Another important way to speed up the RL,
relevant to this work, is the use of heuristics. A
Heuristically Accelerated Reinforcement Learning
(HARL) algorithm is a way to solve a MDP prob-
lem with explicit use of a heuristic function for
influencing the choice of actions by the learning
agent (Bianchi et al., 2008).

The heuristic function H(s, a) defines the im-
portance of performing action a when visiting
state s. The heuristic function is strongly associ-
ated with the policy indicating which action must
be taken regardless of the action-value of the other
actions that could be used in the state.

An algorithm proposed by Bianchi et al.
(2008) to implement the HARL is the Heuristi-
cally Accelerated Q-Learning (HAQL). This al-
gorithm is an extension of the Q-learning algo-
rithm with the heuristic function inserction in the
ε-Greedy action choice rule, that can be written
as:

π(st) =


arandom if q 6 ε,
arg max

at

[Qt(st, at)+

ξHt(st, at)] otherwise.
(4)

Using heuristics to speed up RL algorithms
has been shown to be effective. Several works have
used heuristics to speed up learning such as in
the case-based study (Celiberto et al., 2011), for
example.



4 Learning from Demonstration

Learning from Demonstration (LfD) (Schaal,
1997) is a technique that develops policies from
examples provided by a teacher. Examples are
defined as sequencies of state-action pairs that are
recorded during the teacher’s demonstration of the
desired behavior.

According to Argall et al. (2009), LfD has
been applied to a large variety of problems in the
mobile robotics domain, since this learning does
not need expert knowledge of the domain dynam-
ics and, furthermore, demonstration is an intuitive
way for communication from humans.

LfD can be segmented into two fundamental
phases: gathering the examples and deriving a
policy from the examples. The first phase com-
prises in the execution of the demonstrations by a
teacher. The second phase comprises of deriving
a policy that reproduces the demonstrated behav-
ior, utilizing the dataset of examples obtained in
the first phase.

LfD systems are completely limited by the
quality of the dataset obtained in the demonstra-
tion (first phase). Argall et al. (2009) quoted two
main reasons that are responsible for poor learner
performance: dataset sparsity, and poor quality
of the dataset examples, outcome from a teacher’s
inability to perform the task.

One existing method that can be used to
reduce the LfD limitations, proposed by Smart
and Kaelbling (2002), allows the combination of
the LfD and the RL. This method works in two
phases: demonstration and exploration. In the
demonstration the Q(s, a) function is updated
while the examples are demonstrated to the agent.
After that, the agent uses the exploration via RL
using Q with the previously values obtained in the
first phase.

Nevertheless, as the Q function is a itera-
tive function, generally a large number of demon-
strations are needed to improve substantially the
agent performance.

5 Heuristics from Demonstrations to
Speed Up Reinforcement Learning

As quoted before the RL has been presented
as one of the most popular manner to implement
robot’s learning ability. However, RL is a slow
method of learning and may not be efficient when
the domain contains dynamic agents and large en-
vironments, even taking some of the previous tech-
niques to speed up the learning. A similar issue
may be pointed in the LfD, once the derived policy
can not change anymore after the demonstration
phase. This may be a problem in a environment
that can suffer layout changes. Also, depending
on the quality of the demonstrations, the policy
derived in the LfD may not be the optimal one.

So, the goal of this work is to propose and test
an algorithm that can keep the main advantages of
the RL, like the exploration, and the main advan-
tages of the LfD, like the fact of being an intuitive
communication way between humans and robots.

Inspired by the article presented by Smart
and Kaelbling (2002), this work proposes the com-
bination of the Heuristically Accelerated Rein-
forcement Learning (Bianchi et al., 2008) and
the Learning from Demonstration (Schaal, 1997).
This fusion can be achieved by using the demon-
strations as a method to obtain the heuristics in-
stead of the Q function. So, the heuristics can
accelerate the RL and the algorithm keeps the
RL features and the advantages of the LfD. This
fusion of techniques is named here “Heuristics
from Demonstrations to Accelerate Reinforcement
Learning” (HfDARL).

In this model, the heuristics are created while
the demonstrations are being made, through the
update of the H function in each visited state-
action pair. So, for each action taken by the
teacher, a maximum value η is granted to H(s, a),
where η ∈ < e 0 < η 6∞.

As the purpose of this work is to improve the
agent performance with the minimum number of
demonstrations, even considering a large and com-
plex environment, it is necessary to use a gener-
alization technique to achieve the best heuristic
with few paths examples.

One approach to deal with the generalization
is by using the QSx algorithm (Pegoraro, 2001),
as already said. As the QSx can be an efficient
technique to execute the spatial spreading of the
Q function, the idea here is to adopt its concepts
in order to spread the H function instead of the
Q one.

The similarity applied to the heuristics will be
measured by the spreading function 3. Thereby,
the H function spreading rule wil be:

H(x, u) = H(s, a)σH(s, a, x, u) (5)

Where H(s, a) represents the maximum value
η applied as heuristic in the state s to the action
a.

Once the heuristic is obtained through the
data collected during the demonstrations, the
learning must occur using the Heuristically Ac-
celerated Reinforcement Learning. The com-
plete proposed algorithm is named here Heuris-
tics from Demonstration to Accelerate Q-Learning
(HfDAQL) and is shown in algorithm 2.

6 Experimental Results

In order to verify the behavior of the proposed
learning, experiments were performed considering
the following algorithms: HfDAQL (proposed in



Algorithm 2 HfDAQL

Initialize H(s, a) = 0.
Repeat
Repeat

Demonstrate to the learner agent which ac-
tion a take in state s
Update H(s, a) with the maximum value η
if H(x, u) < H(x′′, u′′) then

Spread H(s, a) to the similar state-
action pairs, considering H(x, u) accord-
ing to the spreading rule:
H(x, u)← H(s, a)σH(s, a, x, u)

end if
Until the target is reached

Until The complete number of demonstrattions
is reached

Initialize Q(s, a) arbitrarily
Repeat

Visit state s
Select an action a according to the HAQL
action choice rule.
Execute the action a
Receive the reward r(s, a) and observe the
next state s′

Update the values of Q(s, a) according to the
Q-Learning rule:
Q(s, a) ← Q(s, a) + α[r(s, a) +
γmaxa′ Q(s′, a′)−Q(s, a)]
Update the state s← s′

Until s is terminal

Where s′ is the next state and a′ is the ac-
tion performed in s′, (x, u) represents the state-
action pairs which are not directly involved in
the current demonstration and H(x′′, u′′) repre-
sents the heuristics values received in previous
demonstrations to (x, u).

this work), HAQL (with heuristics previously de-
fined ad hoc) (Bianchi et al., 2008) and the Q-
Learning (Watkins, 1989). Thereby, the proposed
algorithm performance could be compared with
others two well known learning algorithms.

The experiments were performed in the au-
tonomous mobile robotics domain by using a
simulated environment implemented in software
Player/Stage.

Player/Stage is a robot simulation tool:
Player is a Hardware Abstraction Layer and Stage
is a plugin to Player which listens to what Player
is telling it to do and turns these instructions into
a simulation (Owen, 2010).

To perform the simulations, the robot Pioneer
2-DX, made by Adept MobileRobots, was cho-
sen. This is a mobile robot capable to move itself
through flat grounds, preferentially in closed en-
vironments. The robot has 16 sonars that will be
used to avoid collisions. In this work the robot lo-
calization will be made by an ideal odometry, that

ignores odometry errors. This kind of approach is
possible because Player/Stage has a feature that
allows that.

The virtual environment was established
based on a real laboratory, located at Centro Uni-
versitário da FEI. This room has dimensions 10
x 7.25 m, is enclosed by walls and has desks and
lockers inside. The environment and the robot
with its sonars range can be seen in figure 1.

In order to perform the simulation, the en-
vironment was discretized into square cells, each
cell with 25 x 25 cm of dimension. So, a grid with
40 x 29 cells was created. The robot orientation
was partitioned into 16 discrete values, multiples
of the 22.5o. Thus the variables x, y and θ, used
for learning, could describe a rough approximation
of the robot real state.

Three actions were defined as executable by
the robot: move ahead and turn either clockwise
or anticlockwise. The actions are executed until
the state s change. Additionally to these actions,
the robot can move backward, but it is a passive
action automatically executed when the robot is
very close to an obstacle (less than 25 cm from a
lateral obstacle and less than 30 cm from a frontal
obstacle). This passive action results in negative
reinforcement to the agent.

The parameters used in all methods applied
in this section are the following: reinforcement of
-50 when the robot needs to move backward, -1 for
any executed action, instead of move backward or
reach the goal and 1000 for reaching the goal state;
learning rate α: 20%; discount factor γ: 90%; and
exploration rate ε: 20%.

The robot starts each training episode from a
random pose, and the goal corresponds to a region
in the lower right corner (defined as the region x
> 10,00 m; 0,50 m > y > 0,75 m).

The heuristics were defined as follows: for the
HAQL with heuristics ad hoc, it was granted to
H(s, a) value equal to 5 to the action move for-
ward when the robot is going to east or southeast
(using global coordinates in order to simplify the
understanding). All other H non-related to these

Figure 1: Virtual laboratory and robot.
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Figure 2: Heuristics spatial spreading rule.

coordinates received 0. For the HfDAQL algo-
rithm the demonstrations are responsible for cre-
ating the heuristics, so the maximum value η was
granted to H(s, a) to the state-action pairs used
during the demonstrations. Besides that, H val-
ues were spread to others state-action pairs that
were not involved directly in the demonstrations,
using spatial spreading concepts with similarity by
connectivity and neighborhood.

Thereby, η was defined as 10, following the
precepts established by Bianchi et al. (2008).

Spatial spreading was performed as shown in
figure 2, where the grid is represented by conti-
nous lines and the orientation discretization by the
dashed lines. The spreading was performed with
the use of similarity by conectivity in the robot’s
current state, considering action a0t, and with the
use of similarity by neighborhood in the neighbor
cells. It was used the spread function (equation
3) with τ equal to 0.5 and n equal to the num-
ber of actions needed to take the agent from s to
x (conectivity) or the distance between s and x
(neighborhood).

In this experiment, demonstrations consist of
guiding the robot from a random initial position
to the goal by teleoperation and the teacher has
a global vision of the system. Demonstrations
are considered suboptimals when the teacher tries
to drive the robot directly to the proposed goal.
These demonstrations are not considered optimals
because, as the teacher is the responsible for the
path choice, this path may not be the best one.
However, the difference between optimal and sub-
optimal is quite subtle.

Thus, a study was made in order to verify
how the quantity and quality of the demonstra-
tions influence the learning in the proposed algo-
rithm (HfDAQL). The study showed that the in-
fluence of the demonstrations is more related to

the quality and less to the quantity. Quality here
refers to the covered area during the demonstra-
tions, taking as basis that demonstrations always
aim to drive the robot directly to the goal state.

Once the demonstrations influence study was
done, it is possible to go ahead with the HfDAQL
complete analysis. So, in order to proceed with
the experiments, some parameters were defined: 5
suboptimal examples of paths were used to cover
64% of the free area; 500 episodes were performed
and 10 training sessions. The results can be seen
in figure 3. It is possible to see in the graph that
HfDAQL needs less steps to learn. This difference
is more striking in the first episodes, where the
proposed algorithm is much more efficient.

It was also made a Student T-test for the data
presented in Figure 3 that can be seen in Figure
4. Notice that in the first episodes the majority
of the results are above the dashed line (5% upper
bound), which means that the algorithms com-
pared to the HfDAQL are significantly different,
with a confidence level of at least 95%.

Figure 5 shows the paths of the robot with the
3 algorithms used in this work. The three figures
are created as result of the 1o training episode.
Besides the visual comparison, it is relevant to
highlight the time needed by each algorithm to
complete this episode: Q-Learning took 3.5 hours,
HAQL ad hoc took 33 minutes and the proposed
HfDAQL less than 5 minutes.

7 Conclusion

This work has proposed the use of demon-
strations to obtain the heuristics used to acceler-
ate the RL. The results allow us to conclude that
the proposed algorithm, HfDAQL, was more effi-
cient, mainly in the first training episodes, when
compared to the Q-Learning and the HAQL with
heuristics defined a priori ad hoc. It happens be-
cause the proposed algorithm limits the search
space explored by the learner agent.

Some advantages of the HfDAQL are: the
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possibility to eliminate detailed knowledge of the
robot’s sensors during programming, the low num-
ber of demonstrations needed to speed up sub-
stantially the learning and the reduced number of
steps needed to reach the goal since the first learn-
ing episodes.

The main contribution of this work is the pro-
posal of the HfDAQL algorithm, that uses heuris-
tics obtained from demonstrations to speed up the
RL. Future works include studying the HfDAQL
in more complex environments by implementing
the algorithm in a real robot and studying others
spreading functions to the H function.

8 Acknowledgements

Reinaldo A. C. Bianchi acknowledges the
support of the FAPESP (grants 2011/19280-8,
2012/04089-3 and 2013/17286-4).

References

Argall, B. D., Chernova, S., Veloso, M. and
Browning, B. (2009). A survey of robot learn-
ing from demonstration, Robot. Auton. Syst..

Bianchi, R. A. C., Ribeiro, C. H. C. and Costa,
A. H. R. (2008). Accelerating autonomous
learning by using heuristic selection of ac-
tions, Journal of Heuristics, pp. 135–168.

Celiberto, L. A., Matsuura, J. P., de Mántaras,
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