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Abstract— Trajectory tracking is an issue of vital practical importance for manoeuvreing marine vessels and
dynamic position system in many offshore oil field operations. In this paper, a flatness based approach is proposed
on the tracking control design for a simplified underactuated ship model. The open loop trajectories are planned
in an off-line manner exploiting the Liouvillian character of the nonlinear model. The Jacobian linearization
of system around the planned trajectories will allow to obtain an incremental feedback control law to ensure
a stabilization of the trajectory’s tracking error. The performance of the tracking controller was evaluated by
numerical simulations from arbitrary initial conditions and in the presence of external sinusoidal perturbations.
The reference trajectory was chosen with respect to the Earth-fixed frame.
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Keywords— Rastreamento de trajetória é uma questão de importância prática para manobramento de véıculos
maŕıtimos e posicionamento dinâmico em muitas operações em campos de petróleo offshore. Neste trabalho, uma
abordagem baseada na planejabilidade é proposta para o projeto de um controlador de rastreamento para um
modelo subatuado simples de um navio. As trajetórias em malha aberta são planejadas de uma maneira off-
line explorando o caráter Liouvilliano do modelo não-linear. A linearização Jacobiana do sistema em torno
das trajetórias planejadas permitirá obter uma lei de controle incremental em malha fechada que garanta uma
estabilização do erro de rastreamento de trajetória. A performance do controlador de rastreamento é avaliado por
simulações numéricas a partir de condições iniciais arbitrárias e na presença de perturbações senoidais externas.
A trajetória de referência foi escolhida com respeito ao eixo fixo da Terra.

Keywords— Controle Não-linear; Rastreamento de Trajetória; Sistemas Planejáveis; Sistemas Liouvillian,
Planejamento do Movimento

1 Introduction

Control of mechanical systems is currently
among one of the most active fields of research due
to the diverse applications of mechanical systems
in real-life. During the past century, a series of sci-
entific, industrial, and military applications moti-
vated rigorous analysis and control design for me-
chanical systems. On the other hand, the theoreti-
cally challenging nature of analysis of the behavior
of non-linear dynamical systems attracted many
mathematicians to study control systems (Olfati-
Saber, 2001).

In this context, there is an important class
of mechanical systems known as underactuated
systems, which is defined to be one where the
dimension of the space spanned by the control
vector is less than the dimension of the con-
figuration space (Toussaint et al., 2000). The
possibility of controlling this systems is indeed
appealing, for it allows us to reduce cost and
weight as well as the occurrence of component fail-
ures (Reyhanoglu, 1996).

Belonging to the class of underactuated sys-
tems, control of ocean vessels, including ships and
underwater vehicles, is an active field due to its
theoretical challenges and important applications
such as passenger and goods transportation, en-
vironmental surveying, undersea cable inspection,
offshore oil installations, dynamic positioning, and

many others (Pan and Do, 2009).

Tracking control of surface vessels has mainly
been based on linear models, steering the same
number of degrees of freedom as the number of
control inputs available, and giving local results.
In (Berge et al., 1999) and (Godhavn, 1996), out-
put tracking control is discussed based on feedback
linearization and Lyapunov theory. In (Behal
et al., 2002) and (Pettersen and Nijmeijer, 1999),
global practical tracking controllers are presented,
where the tracking errors are made to converge to
a neighborhood of the origin.

Commonly found in mobile robotics applica-
tions, the flatness property was proposed and de-
veloped by M. Fliess, J. Lévine, P. Martin e P.
Rouchon (Fliess et al., 1992) in order to extend
the theory of Kalman controllability for nonlin-
ear cases (Ayadi, 2002). This property allows a
complete parametrization of all systems variables
(state, inputs, outputs) in terms of a finite set
of independent variables, called the flat outputs,
and a finite number of their time derivatives (Sira-
Ramı́rez and Agrawal, 2004). For both planning
and trajectory tracking problems, flatness is par-
ticularly advantageous for solving them.

Within this context, a special class of mechan-
ical systems may exhibit the Liouvillian character,
i.e. nonflat system with an identifiable flat sub-
system of a dimension smaller than the dimension
of the overall system. The Liouvillian character



allows to compute the variables do not belong
the flat subsystem as elementary integrations of
the flat outputs and a finite number of their time
derivatives. This class of systems has been intro-
duced by Chelouah in (Chelouah, 1997).

For marine vehicles, in (Sira-Ramı́rez, 1999),
the flatness property was used to design a dynamic
feedback control scheme for a simplified nonlin-
ear underactuated hovercraft model. A differ-
ent flatness-based approach for the hovercraft was
proposed in (Limaverde F. and Fortaleza, 2013).
In (Sira-Ramı́rez and Ibanez, 2000), it is demon-
strated that a nonlinear underactuated ship model
has the Liouvillian character, which was used for
an offline trajectory planning.

In this paper, following the results in (Sira-
Ramı́rez and Ibanez, 2000), we proposed to de-
sign a time-varying tracking controller for a non-
linear underactuated ship model exploiting its Li-
ouvillian character and the fact that Jacobian lin-
earization of the system around nominal trajec-
tories yields a flat system. The incremental flat
outputs allows to design an incremental feedback
control law that, when added to the nominal con-
trol, provides the final expression for the tracking
controller, which will be applied directly to the
nonlinear model.

The organization of this paper is as follows.
In Section 2, the mathematical model describing
the dynamics of a simplified underactuated ship
model is introduced. Section 3 presents how the
Liouvillian character of system allows an easy way
to determine the nominal trajectories for all sys-
tem variables. In this very section, it is shown the
steps to derive the tracking controller. Section 4
presents some simulation results testing the ro-
bustness of the proposed controller. The conclu-
sions and proposals for further research are pre-
sented in the last section.

2 The Underactuated Ship Model

In this section, the nonlinear model for the
underactuated ship presented next was proposed
in (Pettersen and Nijmeijer, 1999). The mathe-
matical model of the system is given by the fol-
lowing set of differential equations:

ẋ = u1 cos(ψ)− v sin(ψ)

ẏ = u1 sin(ψ) + v cos(ψ)

ψ̇ = u2

v̇ = −γu1u2 − βv

(1)

where x, y and ψ denote the position and the ori-
entation of the ship in the Earth-fixed frame and
v denotes the linear velocities in sway. The con-
trol inputs u1 and u2 represent the surge and yaw
velocities respectively. The constants γ and β are
strictly positive constants with γ < 1.

2.1 Off-line Trajectory Planning

Following the work in (Sira-Ramı́rez, 1999),
from the System (1), it is possible to find a flat
subsystem characterized by the sway velocity and
angular orientation as flat outputs, which readily
allows to compute the nominal control inputs from
them and their time derivatives. Thus, if v∗(t) and
ψ∗(t) are known, u∗1(t) and u∗2(t) are given by:

u∗1(t) = − v̇
∗(t) + βv∗(t)

γψ̇∗(t)
(2)

u∗2(t) = ψ̇∗(t) (3)

The position variables can be expressed as
quadratures of differential functions of the flat
outputs, as seen below.

x∗(t) =

∫ {
−
v̇∗(t) + βv∗(t)

γψ̇∗(t)
cos(ψ∗(t)) − v∗(t) sin(ψ∗(t))

}
(4)

y∗(t) =

∫ {
−
v̇∗(t) + βv∗(t)

γψ̇∗(t)
sin(ψ∗(t)) + v∗(t) cos(ψ∗(t))

}
(5)

In many practical cases, it is easier to deter-
mine the nominal trajectories for the pair (x∗(t),
y∗(t)) than for (v∗(t), ψ∗(t)). Therefore, after
some algebraic manipulations, it is possible to
obtain the following set of differential-algebraic
equations:

ψ̇∗(t) =

[
1

(γ − 1)(ẋ∗(t) cos(ψ∗(t)) + ẏ∗(t) sin(ψ∗(t)))

]
× {(ẍ∗(t) + βẋ∗(t)) sin(ψ∗(t))

− (ÿ∗(t) + βẏ∗(t)) cos(ψ∗(t))} (6)

v∗(t) = −ẋ∗(t) sin(ψ∗(t)) + ẏ∗(t) cos(ψ∗(t))) (7)

Without any loss of accuracy, a coordi-
nate transformation (see (Pettersen and Egeland,
1996)) is used to replace trigonometric terms by
simple polynomial equations, which is a global dif-
feomorphism:

z1 = x cos(ψ) + y sin(ψ)

z2 = −x sin(ψ) + y cos(ψ) (8)

z3 = ψ

This procedure will reduce the efforts to deter-
mine the incremental flat outputs after lineariza-
tion around the nominal trajectories, as will be
seen in the next section. The resulting model of
the ship is then:

ż1 = u1 + z2u2

ż2 = v − z1u2
ż3 = r

v̇ = −γu1u2 − βv

(9)

where the nominal trajectories for z∗1(t), z∗2(t) and
z∗3(t) are directly obtained from Eq. 8. Therefore,
the off-line computed trajectories will be used in a
online feedback control scheme obtained from the
following approximate linearization scheme.



3 A Trajectory Tracking Feedback
Controller

Let us define the state variable tracking er-
rors:

z1δ = z1 − z∗1(t) z2δ = z2 − z∗2(t)

z3δ = z3 − z∗3(t) vδ = v − v∗(t)
(10)

The incremental control inputs u1δ and u2δ
complement the nominal open loop control sig-
nals u∗1(t) and u∗2(t), respectively, to generate the
tracking controllers:

u1(t) = u∗1(t) + u1δ (11)

u2(t) = u∗2(t) + u2δ (12)

with u∗1(t) and u∗2(t) being the open loop reference
control inputs that would, ideally, steer the ship
along the nominal trajectory.

A Jacobian linearization of the System (9),
around the planned trajectories, is given by the
following state representation:

ż1δ = u∗2(t)z2δ + u1δ + z∗2(t)u2δ

ż2δ = −u∗2(t)z1δ + vδ − z∗1(t)u2δ

ż3δ = u2δ

v̇δ = −γu∗2(t)u1δ − βvδ − γu∗1(t)u2δ

(13)

This linear time-varying system can be writ-
ten in matrix form Ẋδ = A(t)Xδ + B(t)Uδ, so
we can also compute the Kalman’s controllability
matrix CK(t) according to the formula developed
in (Silverman and Meadows, 1967):

CK(t) = [B(t), (A(t)− d

dt
)B(t), · · · ,

(A(t)− d

dt
)(n−1)B(t)] (14)

It can be shown that System (13) loses con-
trollability around the condition: r∗(t) = 0.
Avoiding this singularity, the system is uniformly
controllable, so we can extract the following full
rank n× n matrix, C(t), from the Kalman’s con-
trollability matrix:

C(t) = [b1(t), · · · , (A(t)− d

dt
)(θ1−1)b1(t), · · · ,

bm(t), · · · , (A(t)− d

dt
)(θm−1)bm(t)] (15)

with θi, i = 1, · · · ,m, being the Kronecker con-
trollability indices of the system, which must sat-
isfy

∑
i θi = n (Poljak, 1990).

Under above assumptions, the incremental
flat outputs can be computed by the following for-
mula (Sira-Ramı́rez and Agrawal, 2004):

Fδ =

[
F1δ

F2δ

]
=


φ1
...

φm

C−1(t)Xδ (16)

where φj, j = 1, · · · ,m are n-dimensional row vec-
tors of the form

φj = [0, · · · , 0, 1, 0, · · · , 0] (17)

with the 1 in the (
∑j
i=1 θi)-th position.

Moreover, any uniformly non-zero, time-
varying, scalar multiple of the flat output is also
a flat output (Sira-Ramı́rez and Agrawal, 2004),
which simplifies the expression for the flat output.
Thus, choosing the controllability indices θ1 = 2
and θ2 = 2, and performing possibles simplifica-
tions, the incremental flat outputs of the linearized
System (13) are given by:

F1δ = α1(t)z1δ + α2(t)z2δ + α3(t)z3δ + α4(t)vδ
(18)

F2δ = η1(t)z1δ + η2(t)z2δ + η3(t)z3δ + η4(t)vδ
(19)

where

α1(t) = γu∗2(t)[γu∗1(t) + ż∗1(t) + u∗2(t)z∗2(t)] (20)

α2(t) = γ(−z∗1(t)u∗2(t)2 − ż∗2(t)u∗2(t)

+ u̇∗1(t) + βu∗1(t)) (21)

α3(t) = γ{u̇∗1(t)z∗1(t) + γu∗1(t)2 + βu∗1(t)z∗1(t)

+ (ż∗1(t)− (γ − 1)u∗1(t))u∗2(t)z∗2(t)

− u∗2(t)2(z∗1(t)2 + z∗2(t)2)− ż∗1(t)u∗1(t)

− ż∗2(t)u∗2(t)z∗1(t)} (22)

α4(t) = γu∗1(t)− ż∗1(t) + u∗2(t)z∗2(t) (23)

η1(t) = −γu∗2(t)2(γ + 1) (24)

η2(t) = −γ(u̇∗2(t) + βu∗2(t)) (25)

η3(t) = γ{(γ + 1)u∗2(t)(u∗2(t)z∗2(t)− u∗1(t))

− z∗1(t)(u̇∗2(t) + βu∗2(t))} (26)

η4(t) = −u∗2(t)(γ + 1) (27)

The controllability indices correspond to the
number of times needed to derive the flat outputs
in order to obtain the incremental control inputs
in terms of the flats outputs and their time deriva-
tives. Then, as the indices are equal to 2, we need
to derive the Eq. (18) and Eq. (19) two times.

Furthermore, we can pre-compute the time-
varying coefficients presents in this equations,
which will be used as a strategy to determine the
time derivatives of the flat outputs. Thus, it is
easier to mount the matrix equation F = M(t)X
with:

F =
[
F1δ Ḟ1δ F̈1δ F2δ Ḟ2δ F̈2δ

]T
(28)

X =
[
z1δ z2δ z3δ vδ u1δ u2δ

]T
(29)

where M(t) is square matrix (6 × 6) with time-
varying coefficients.



Inverting the matrix M(t), we observe the
differential parametrization of the linearized sys-
tem (13) in terms of the incremental flat outputs
and their time derivatives. Therefore, the con-
troller design is greatly facilitated by the fact that
the system is equivalent, under a time-varying
state coordinate transformation and state feed-
back, to a controllable, time-invariant, multi-
variable linear system in Brunovsky’s canonical
form (Sira-Ramı́rez and Agrawal, 2004).

The incremental input controls can be easily
obtained as follow:

u1δ = C1(t)F1δ + C2(t)Ḟ1δ + C3(t)F̈1δ

+ C4(t)F2δ + C5(t)Ḟ2δ + C6(t)F̈2δ (30)

u2δ = C7(t)F1δ + C8(t)Ḟ1δ + C9(t)F̈1δ

+ C10(t)F2δ + C11(t)Ḟ2δ + C12(t)F̈2δ (31)

where the time-varying coefficients in Eq. (30) and
Eq. (31) are obtained by the last two of M−1(t).

The linearized System (13) is therefore equiv-
alent, under a change of input coordinates, to
the following two decoupled linear systems in
Brunovsky’s form:

F̈1δ = υ1 (32)

F̈2δ = υ2 (33)

A dynamic tracking controller may be readily
obtained by setting:

υ1 = −k1Ḟ1δ − k0F1δ (34)

υ2 = −k1Ḟ2δ − k0F2δ (35)

with k0, k1 chosen so that the closed loop char-
acteristic polynomial p(s) = s2 + k1s + k0 is a
Hurwitz polynomial (Sira-Ramı́rez and Agrawal,
2004).

Since both F1δ and F2δ asymptotically con-
verge to zero in an exponentially fashion, then,
it follows the previous differential parametrization
that, the state variable tracking errors also asymp-
totically converge to zero.

The final expression therefore for u1(t) and
u2(t) are given by:

u1(t) = u∗1(t) + {C1(t)F1δ + C2(t)Ḟ1δ

+ C3(t)[−k1Ḟ1δ − k0F1δ] + C4(t)F2δ

+ C5(t)Ḟ2δ + C6(t)[−k1Ḟ2δ − k0F2δ]} (36)

u2(t) = u∗2(t) + {C7(t)F1δ + C8(t)Ḟ1δ

+ C9(t)[−k1Ḟ1δ − k0F1δ] + C10(t)F2δ

+ C11(t)Ḟ2δ + C12(t)[−k1Ḟ2δ − k0F2δ]}
(37)

4 Simulation Results

Numerical simulations were carried out to
asses the performance of the designed controllers
in two cases. Following (Sira-Ramı́rez, 1999), we
chose a typical circular trajectory defined in the
earth fixed coordinate frame, of radius ρ, centered
around the origin. The ship must follow in a coun-
terclockwise sense in the plane (X,Y) with a given
constant angular velocity of value ω. In the sec-
ond simulation, for the same circular trajectory,
we introduced in the non-actuated dynamics an
unmodeled external sinusoidal perturbation, sim-
ulating a “wave field” effect.

The desired trajectory can be parametrized as
follows:

x∗(t) = ρ sin(ωt) (38)

y∗(t) = ρ(1− cos(ωt)) (39)

The corresponding nominal trajectories for
the orientation angle and sway velocity were di-
rectly computed by Eq. (6) and Eq. (7). The open
loop control signals u∗1(t) and u∗2(t) were obtained
by Eq. (2) and Eq. (3). Moreover, it is possible to
compute the trajectories nominal for z∗1(t), z∗2(t)
and z∗3(t), as described in Eq. (8).

In the simulations, the initial ship position
and orientation was taken to be:

x(0) = 1 y(0) = −4

ψ(0) = 2π/3 v(0) = 0
(40)

The parameters of the reference trajectory
and of the system model were set to be:

ρ = 5 ω = 1 β = 1.5 γ = 0.5 (41)

The control parameters were chosen as:

k1 = 6 k0 = 9 (42)

For the external sinusoidal perturbation, we
choose the following form:

λ(t) = 2.5[sin(10t) + 0.5 cos(π10t)] (43)

In all numerical simulations, the ship’s path
is shown in red dotted line, while the desired tra-
jectory is in blue. Furthermore, input saturation
was added to the system.

Figure 1 depicts the ship motion in the plane
(X,Y) for the initial conditions in Eq. (40). In
Figure 2, we can see the corresponding position
time evolution. The corresponding angular orien-
tation and sway velocity are shown in Figure 3.
The time evolution of the control inputs is shown
in Figure 4. Figure 5 displays the result of the
simulation in the presence of external sinusoidal
perturbation.
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Figure 1: Desired and actual trajectory for under-
actuated ship.
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Figure 2: The time evolution of the position (- -)
along with the respective desired trajectory (–).
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Figure 3: The time evolution of the orientation
and sway velocity (- -) along with the respective
desired trajectories (–).

5 Conclusions

In this paper, we have proposed a flatness-
based approach to design a trajectory track-
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Figure 4: Control Inputs.
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Figure 5: Circular path tracking performance un-
der external sinusoidal perturbation.

ing controller for a simplified underactuated ship
model. Precomputing the necessary off-line tra-
jectory, as made in (Sira-Ramı́rez, 1999), the ap-
proach is based on showing a systematic trajectory
design computing the flat outputs of the linearized
system by the inverse of the controllability matrix
associated with the Kronecker controllability in-
dices.

The proposed feedback controller uses the off-
line computed open loop control signals comple-
mented with a linearization based feedback con-
troller, providing the necessary on-line correction
to track the desired trajectory.

The first simulation illustrates the tracking er-
rors converging to zero exponentially, thereby en-
suring that the ship perfectly follows the trajec-
tory specified previously.

In the presence of external sinusoidal pertur-
bations, it was observed that the system converges
to a satisfactory approximation of desired path,



but takes a little bit longer time than the first sim-
ulation. It is interesting to emphasize that the am-
plitude of the disturbance had 50% of the radius
of the circular path desired. Both simulation re-
sults confirm the successful tracking performance
and effectiveness of the proposed controller.

In further studies, we hope to validate the
controller in a real platform. Moreover, the ideas
shown in this paper can be applied to design con-
trollers of other underactuated systems with simi-
lar model structures. There is an ongoing project
which aims to extend this study to a more com-
plex ship model where it adds the dynamic of the
surge and yaw velocities.
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férentiellement plats, C. R. Acad. Sciences
315: 619–624.

Godhavn, J. (1996). Nonlinear tracking of under-
actuated surface vessels, Decision and Con-
trol, 1996., Proceedings of the 35th IEEE
Conference on, Vol. 1, pp. 975–980 vol.1.

Limaverde F., J. O. A. and Fortaleza, E. L. F.
(2013). Motion planning and tracking for ma-
rine vessels, Proc. ASME 2012 32th Interna-
tional Conf. Ocean, Offshore and Arctic En-
gineering (OMAE’13), Nantes, France.

Olfati-Saber, R. (2001). Nonlinear control of un-
deractuated mechanical systems with applica-
tion to robotics and aerospace vehicles, PhD
thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Insti-
tute of Technology.

Pan, J. and Do, K. D. (2009). Control of Ships
and Underwater Vehicles: Design for Under-
actuated and Nonlinear Marine Systems, Ad-
vances in Industrial Control, Springer, Craw-
ley, Australia.

Pettersen, K. and Egeland, O. (1996). Exponen-
tial stabilization of an underactuated surface
vessel, Decision and Control, 1996., Proceed-
ings of the 35th IEEE, Vol. 1, IEEE, pp. 967–
972.

Pettersen, K. Y. and Nijmeijer, H. (1999). Global
Practical Stabilization and Tracking for an
Underactuated Ship - A Combined Averag-
ing and Backstepping Approach, Modeling,
Identification and Control 20(4): 189–200.

Poljak, S. (1990). On Controllability Kronecker
Indices of Structured Systems, Department of
Applied Mathematics, Faculty of Mathemat-
ics and Physics, Charles University.

Reyhanoglu, M. (1996). Control and stabilization
of an underactuated surface vessel, Decision
and Control, 1996., Proceedings of the 35th
IEEE, Vol. 3, IEEE, pp. 2371–2376.

Silverman, L. M. and Meadows, H. E. (1967).
Controllability and observability in time-
variable linear systems, Siam Journal On
Control 5(1): 64–73.

Sira-Ramı́rez, H. (1999). On the control of the un-
deractuated ship: a trajectory planning ap-
proach, Decision and Control, 1999. Proceed-
ings of the 38th IEEE Conference on, Vol. 3,
pp. 2192–2197 vol.3.

Sira-Ramı́rez, H. and Agrawal, S. K. (2004). Dif-
ferentially Flat Systems, Control Engineering
Series, Marcel Dekker.

Sira-Ramı́rez, H. and Ibanez, C. (2000). The con-
trol of the hovercraft system: a flatness based
approach, Control Applications, 2000. Pro-
ceedings of the 2000 IEEE International Con-
ference on, pp. 692–697.

Toussaint, G. J., Basar, T. and Bullo, F. (2000).
Optimal tracking control techniques for non-
linear underactuated systems, Proceedings of
the 39 th IEEE Conference on Decision and
Control, IEEE, pp. 2078–2083.


