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Abstract— This paper describes the design and implementation of robotic agents for the RoboCup Simulation
2D category that learns using a new Transfer Learning algorithm, the SARSA(λ) Transfer Learning with CMAC
(SλTL). This algorithm allows the use of case-based reasoning (CBR) to speed up the well-known reinforcement
learning algorithm SARSA(λ) with CMAC. Each case correspond to past experience from other agents in similar
learning and will influence the choice of the action in a new soccer Simulation 2D game. A set of empirical
evaluations was conducted in the RoboCup 2D Simulator, and experimental results show that even a simple case
enhances significantly the performance of the agents.
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1 Introduction

The goal of the RoboCup Simulation League is
to provide an environment where teams can be
created in order to compete against each other in
a simulated soccer championship. However, the
task is not trivial. Any soccer team must play in
harmony and must act as a perfect and dynamic
multi-agent system. In the RoboCup Simulation
2D one of the main problems is to find the best
action to do when the player have the possession
of the ball. Reinforcement Learning is one way to
solve this problem, RL provides model-free learn-
ing of adequate control strategies, has strong theo-
retical guarantees on convergence (Szepesvári and
Littman, 1996) and also has been successfully ap-
plied to solve a wide variety of control and plan-
ning problems.

However, one of the main problems with RL
algorithms is that they typically suffers from very
slow learning rates, requiring a huge number of
iterations to converge on a good solution. This
problem becomes worse in tasks with high dimen-
sional or continuous state spaces and when the
system is given sparse rewards. One of the reasons
for the slow learning rates is that most RL algo-
rithms assumes that neither an analytical model
nor a sampling model of the problem is available
a priori, when, in some cases, there is a domain
knowledge that could be used to speed up the
learning process.

This paper describes a solution to the problem
using RL algorithms in high dimensional or con-
tinuous state spaces. Describing the design and
implementation of robotic agents for the RoboCup
Simulation 2D category that learns using a Trans-
fer Learning algorithm, the SARSA(λ) Transfer
Learning with CMAC (SλTL). The use of trans-
fer learning can increase significantly the RL al-
gorithm in difficult tasks by allowing agents to

generalize their experience across learning prob-
lems (Taylor, 2008). The SλTL is a case-based
heuristically accelerated extension of the tradi-
tional RL algorithm, SARSA (Rummery and Ni-
ranjan, 1994).

The paper is organized as follows: Section 2
describes the briefly reviews the RL problem, de-
scribes the SARSA(λ) and CMAC algorithm. Sec-
tion 3 describes the proposed algorithm and sec-
tion 4 describes the experiment and result. Sec-
tion 5 concludes this work.

2 Reinforcement Learning, SARSA(λ)
algorithm and CMAC

Reinforcement Learning (RL) algorithms have
been applied successfully to the on-line learning
of optimal control policies in Markov Decision
Processes (MDPs). In RL, this policy is learned
through trial-and-error interactions of the agent
with its environment: on each interaction step the
agent senses the current state s of the environ-
ment, chooses an action a to perform, executes
this action, altering the state s of the environ-
ment, and receives a scalar reinforcement signal r
(a reward or penalty).

The RL problem can be formulated as a dis-
crete time, finite state, finite action Markov De-
cision Process (MDP). The learning environment
can be modeled by a 4-tuple 〈S,A, T ,R〉, where:

• S: is a finite set of states.

• A: is a finite set of actions that the agent can
perform.

• T : S ×A → Π(S): is a state transition func-
tion, where Π(S) is a probability distribution
over S. T (s, a, s′) represents the probability
of moving from state s to s′ by performing
action a.



• R : S ×A → <: is a scalar reward function.

The goal of the agent in a RL problem is to
learn an optimal policy π∗ : S → A that maps the
current state s into the most desirable action a to
be performed in s.

One strategy to learn the optimal policy π∗ is
by the SARSA algorithm. This algorithm was pro-
posed by Rummery and Niranjan (Rummery and
Niranjan, 1994) and allow the agent to learn the
evaluation function Q : S × A → R. Each action
valueQ(s, a) represents the expected cost incurred
by the agent when taking action a at state s and
following an optimal policy thereafter, to help the
learning we used the eligibility traces (λ).

The basic mechanism of reinforcement learn-
ing are the eligibility traces (Sutton and Barto,
1998). The eligibility define how many times in a
recent past one state was visited. The equation 1
allow the reinforcement received update all states
recently visited and make the states near more in-
fluenced by them.

e(s, a) =

t∑
k=1

(λγ)(t−k)δs,sk , (1)

where:

• s state being updated,

• a action,

• t current instant,

• λ discount factor (0 ≤ λ ≤ 1),

• γ discount factor for future reward (0 ≤ γ <
1),

• δs,sk is 1 if s = sk and 0 otherwise.

One characteristic that helps to compute el-
igibility is calculating each step running the fol-
lowing algorithm:

et(s, a) =

{
γλet−1(s, a) + 1 if s = st and a = at

γλet−1(s, a) otherwise

(2)
One strategy to choose policy of actions

widely used is the ε − Greedy exploration. In
this kind of exploration the agent will choose the
action with the best value of Q with probability
1− ε and choose a random action with probability
ε. The state transition will occur following by the
rule:

π(st) =

{
arandom if q ≤ ε,
arg maxat Q̂t(st, at) otherwise,

(3)

where:

Table 1: The SARSA(λ) algorithm

Initialize Q̂t(s, a) arbitrarily and e(s,a)=0 .
Repeat (for each episode):

Initialize s, a.
Repeat (for each step of episode):

Select an action a
”

observe r(s, a), s′.
Choose a′ from s′ using policy derived from Q
δ = r + γQ(s′, a′)−Q(s, a)
e(s, a) = γλe(s, a)
For all s,a

Q(s, a)← Q(s, a) + αδe(s, a)
e(s, a)← γλe(s, a)

s← s′; a← a′

Until s is terminal.
Until some stopping criterion is reached.

• q is a random value with uniform probability
in [0,1] and ε (0 ≤ ε ≤ 1) is the parameter
which defines the exploration/exploitation
trade-off

• arandom is an action randomly chosen among
those available in state st.

The algorithm is presented in Table 1, using
the following update rule is:

Qt+1(s, a) = Qt(s, a) + αδtet(s, a) (4)

where:

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at) (5)

RL algorithms are very useful for solving a
wide variety problems when the model is not
known in advance, when the space states is small
it can be represented in a table form, but when
the space states grows, and became impossible
to continue with tabular form. One method
to describe the state when have a huge space
is by Cerebellar Model Articulation Controller
(CMAC)(Albus, 1975). The CMAC was proposed
as a functional model of the brain and a function
approximation and have been applied since the
80’s especially in automatic control.

The CMAC consists of a set of inputs with
multidimensional limits finite overlapped called
tiles (figure 1). An input vector is contained in
a number of tiles overlapped less than the total
number of tiles. The tiles are layered axis-parallel
tilings over then. More tiles allows better general-
ization and more tilling allows more accurate rep-
resentation of smaller details (Taylor, 2008) but
the number of the tiles and tillings are generally
hand coded.

The value of the CMAC is determined by the
tiles excited by a given input and the output is
the computed sum:

f(x) =

i∑
wifi(x) (6)



Figure 1: The value of the CMAC is computed
summing the weights wi from each tiles. To de-
termine which tile is activated in each different
tilings are used static variable.

where:

• w is the weight of each tilling i,

• fi(x) is 1 if tile i is active and 0 otherwise

3 The SARSA(λ) Transfer Learning

The SARSA(λ) transfer learning works in two
steps. The first step is retrieval of cases and the
second step is using this cases to accelerate the
RL algorithm. Case Based Reasoning (de Mán-
taras et al., 2005) is an AI technique that has
been shown to be useful in a multitude of domains.
CBR uses knowledge of previous situations (cases)
to solve new problems, by finding a similar past
case and reusing it in the new problem situation.

3.1 Retrieving of Cases

We uses knowledge of previous situations (cases)
to solve new problems, by finding a similar past
case and reusing it in the new problem situation.
Every case is composed of a problem description
(P ) and the corresponding description of the solu-
tion (A). Therefore, the case definition is formally
described as a tuple:

case = (P,A). (7)

This model was proposed by Ros (Ros, 2008),
the problem description P corresponds to the situ-
ation in which the case can be used. For example,
for a Soccer problem the description of a case is
the agent position and opponent distance and the
solution description A is composed by the action
that must perform to solve the problem to pass a
ball to another agent.

In theory, more cases in a cases-base means
better performance, because will cover all solu-
tion, but it is a false assumption. The case based

needs the best cases, the cases that solve the prob-
lem and this problem is not trivial. To find a par-
tial solution we use RL algorithm in the domains
and acquires the cases when the learning stabi-
lizes, for a Q-Learning for example the learning
stabilizes when Q̂(s′, a′) − Q̂(s, a) ∼ 0, but the
number of the cases continues a problem, in prac-
tice show the best solution is to acquire sparse (or
random) example from the best actions.

3.2 Using this cases to accelerate the RL algo-
rithm - The TL algorithm

Transfer Learning is a very important tool to
speed up RL algorithms because, in RL, even a
small change on the configuration of a problem
may requires a complete new training. With TL,
what an agent has learned can be transferred to
a new situation, helping it to learn faster. Drum-
mond (Drummond, 2002) was probably the first
to use CBR to speed up RL, proposing to accel-
erate by transferring parts of previously learned
solutions to a new problem, exploiting the results
of prior learning to speed up the process.

To transfer the cases between learning agents
in between domains, we propose a algorithm that
expands the SARSA(λ) with CMAC by making
use of Transfer Learning, Case-based reasoning
and heuristics, the SARSA(λ) Transfer Learning
algorithm.

The cases in this algorithm will be the heuris-
tics functions that help to speed up the SARSA(λ)
algorithm. The main motivation of using cases
as heuristics to transfer the learning is that the
heuristic function is an action policy modifier
which does not interfere with the standard boot-
strap like update mechanism of RL the algorithm:
the SλTL differs from the SARSA only in the way
exploration is carried out, which allows many the-
oretical conclusions obtained for the SARSA(λ) to
remain valid for the SλTL.

Case retrieval is in general driven by a simi-
larity measure between the new problem and the
solved problems in the case base. In this work
we use the case retrieval method proposed by Ros
(Ros, 2008), which considers the similarity be-
tween the problem and the case (the similarity
is computed using by Gaussian distance between
the case and the problem), the cost of adapting
the problem to the case, and the applicability of
the solution of the case. The cost of adapting the
problem to the case is computed as a function of
the euclidean distances between the features (po-
sitions of players and ball) in the problem and
the ones specified in the case. The complete case
retrieval algorithm is described in detail in Ros
(Ros, 2008).

After a case is retrieved, a heuristic is com-
puted using Equation 8 and the action suggested
by the case is selected using Equation 9 and exe-



Table 2: The SλTL algorithm

Initialize Q̂t(s, a)arbitrarily and Ht(s, a) = 0
Repeat (for each episode):

Initialize s.
Repeat (for each step of episode):

Compute similarity and cost.
If there is a case that can be reused:

Retrieve and Adapt if necessary.
Compute Ht(s, a) using Equation 8

with the actions suggested
by the case selected.

Select an action a using equation 9.
If don’t have a case that can be reused:
Choose a′ from s′ using

policy derived from Q
Execute the action a, observe r(s, a), s′.
δ = r + γQ(s′, a′)−Q(s, a)
e(s, a) = γλe(s, a)
For all s,a

Q(s, a)← Q(s, a) + αδe(s, a)
e(s, a)← γλe(s, a)

s← s′; a← a′

Until s is terminal.
Until some stopping criterion is reached.

cuted. If the case base does not contain a case that
can be used in the current situation, the SλTL al-
gorithm will behave as the traditional SARSA(λ)
algorithm. The complete SλTL algorithm is pre-
sented in Table 2.

H(s, a) =

{
max
i

Q̂(s, i)− Q̂(s, a) + η if a = πH(s),

0 otherwise.

(8)
where η is a small real value (usually 1) and πH(s)
is the action suggested by the heuristic policy.

π(s) =

{
arg maxa

[
Q̂(s, a) + ξH(s, a)β

]
if q ≤ p,

arandom otherwise,

(9)
where H(s, a) is the heuristic function that plays
a role in the action choice, ξ and β are design pa-
rameters that control the influence of the heuristic
function, q and p are parameters that define the
exploration/exploitation trade-off and arandom is
an action randomly chosen among those available
in state s.

As a general rule, the value of H(s, a) used
should be higher than the variation among the
Q̂(s, a) values for the same s ∈ S, in such a way
that it can influence the choice of actions, and it
should be as low as possible in order to minimize
the error.

4 Experiment in the RoboCup 2D
Simulation domain

We used in this work two domains to acquire
the cases: the modified Littman’s Soccer and do-
main information. These cases will be used in the
Robocup 2D soccer game.

The modified Littman’s Soccer domain used
in this work is a game played by two teams, A and
B, of two players each, which compete in a 10 x 10
grid. Each team is composed by the defender (d)
and the attacker (a). Each cell can be occupied
by one of the players, which can take an action
at a turn. The actions that are allowed are: keep
the agent still, move – north, south, east and west
– or pass the ball to another agent. The action
“pass the ball” from agent ai to aj is successful if
there is no opponent in between them. If there is
an opponent, it will catch the ball and the action
will fail.

Actions are taken in turns: all actions from
one team’s agents are executed at the same in-
stant, and then the opponents actions are exe-
cuted. The ball is always with one of the players.
When a player executes an action that would fin-
ish in a cell occupied by the opponent, it looses
the ball and stays in the same cell. If an action
taken by the agent leads it out the board, the
agent stands still. When a player with the ball
gets into the opponent’s goal, the move ends and
its team scores one point. At the beginning of each
game, the agents are positioned in a random po-
sition and the possession of the ball is randomly
determined, with the player that holds the ball
making the first move.

In this domain the Q-Learning algorithm is
used, with agents continuously playing soccer
games. Acquiring cases starts when the learning
stabilizes (Q̂(s′, a′)− Q̂(s, a) ∼ 0). A cases are ac-
quired by sampling the action-state set randomly
every time a player passes the ball successfully to
another teammate. At the end of this training,
300 cases are stored in the case base, and every
case represents a situation in which a player passes
the ball successfully. Each case is described by:
The problem description (P), which is composed
by the distance of the agent to teammate and op-
ponent near of the player; the action (A), that
describes the action the player was doing when
passes the ball.

The domain information with use is human
knowledge of past knowledge to describe possible
cases that can the agents use to score much as
possible. This knowledge consists with rule that
the agents must follow or should follow to score.
This domain information case based is made with
two single rules:

• If the agent position is until a 25 meters from
the teammate goal, try to passes the ball to
another teammate,



• otherwise try to kick the ball to opponent goal
if the player position is less than 25 meters
from opponent goal.

In this paper, experiment were applied in
the RoboCup 2D Soccer Server (Noda, 1995).
The Soccer Server is a system that enables au-
tonomous agents programs to play a match of soc-
cer against each other. A match is carried out in
a client/server style: a server provides a virtual
field and calculates movements of players and a
ball, according to several rules. Each client is an
autonomous agent that controls movements of one
player. Communication between the server and
each client is done via TCP/IP sockets. The Soc-
cer Server system works in real-time with discrete
time intervals, called cycles. Usually, each cycle
takes 100 milliseconds and in the end of cycle,
the server executes the actions requested by the
clients and update the state of world. We modi-
fied a couple of RoboCup simulation soccer default
to remove hidden state. We allow players to ”see”
with a 360◦ all the field players.

In the Robocup 2D domain we build a team
with the SλTL algorithm, this team can take an
action at a turn. The actions that are allowed to
learn are: hold the ball, pass the ball and kick to
goal. Other action allowed, but without learning
is: if fastest intercept the ball and hold position
otherwise. In the experiments, the implemented
teams have to learn while playing against a team
composed of agents from the UvA Trilearn 2003
Team (de Boer and Kok, 2002), this team is very
simple and only kick the ball to forward.

The CMAC was build with 25 x 25 and made
of 16 tilings (the setup utilized was detailed in
Singh and Sutton (Singh et al., 1996)). The state
representation was defined using a set of variables
involving distances and angles between players.
This state is derived from information about the
position of the players. We use the following 12
states variable:

• D1: Distance in meters, between the player
and the first close teammate,

• D2: Distance in meters between the player
and the second close teammate,

• O1: Distance in meters between the player
and the first close opponent,

• O2: Distance in meters, between the player
and the second close opponent,

• θ0: Angle in degrees of the player,

• θ1: Angle in degrees between the player and
ball,

• θ2: Angle in degrees between the player and
the first close teammate,

• θ3: Angle in degrees between the player and
the first close opponent,

• Xd: Position discretized of the player in x,

• Yd: Position discretized of the player in y,

• Gt: Distance discretized between the player
and the teammate goal,

• Go: Distance discretized between the player
and the opponent goal.

Table 3: Distance discretized between the player
and the goal

Distance Discretization
5 m and less 0

10 m 1
20 m 2
30 m 3
40 m 4

50 m and more 5

Figure 2: The learning curves for the SARSA(λ),
H-SARSA(λ) and SλTL algorithms

Figure 3: Results from Student’s t-Test between
SλTL versus SARSA(λ) and SλTL versus H-
SARSA(λ) algorithms.

Ten training sessions were executed, with each
session consisting of twenty four hours of learn-
ing. We used to compare the SARSA(λ), the



H-SARSA(λ) and the algorithm SλTL. The H-
SARSA(λ) is the SARSA(λ) with simple heuris-
tic only that we call from the domain informa-
tion. Figure 2 show the learning curves for all
algorithms. It can be seen that the performance
of the SARSA(λ) is worst than that of the SλTL.
It can also be seen that the SλTL performs better
than the H-SARSA(λ), indicating that the speed
up was not due only to the use of a simple heuris-
tic. The reward used in the source domain was
+100 a goal is made by the player (other team-
mate receives +10 by the action made) and -100
(to all players) when the team concedes a goal.

Student’s t-Test was used to verify the hy-
pothesis that the transfer of learning speeds up
the learning process. For the experiments the ab-
solute value of T was computed for each episode
using the same data presented in Figure 2. The
greater the absolute value of T, more significantly
different is the result. The dotted line indicates
the 0.0005% confidence limit, i.e. results above
the line are different and the probability for this
statement to be erroneous is 0.0005%. The result,
presented in figures 3 shows that SλTL performs
clearly better than SARSA(λ) and H-SARSA(λ).
Is important to note in the figure of the t-Test
between SλTL versus SARSA(λ) that initial vari-
ation happens by the dynamism of the game with
only RL.

The parameters used in the experiments were
the same for the algorithms: the learning rate is
α = 0.125, the exploration/ exploitation rate p =
0.01 the discount factor γ = 0.9, λ = 1.0 and
η = 10 . Values in the Q were randomly initiated,
with 0 ≤ Q(s, a, o) ≤ 1. The experiments were
programmed in C++ and executed in a IMAC I7
2.8GHz, with 16GB of RAM in a MAC-OS 10.8.3
platform.

5 Conclusion and Future Works

This work proposed the algorithm SλTL. This al-
gorithm combines the use of Case-Based Reason-
ing to speed up the SARSA(λ) algorithm using
Transfer Learning. The contributions of this work
is that combine two different cases in the same
cased-base, transferring the learning to a multi-
ple agents domain. The experiments showed that
transferring the policy learned by the agents in
two domain to agents in a different domain by
means of the case-base speeds up the convergence
time of the algorithm. Future works include in-
corporating case-based functions in other RL al-
gorithms obtaining results for more complex do-
mains.
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