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Abstract— This work proposes a method in order to choose suitable control laws supported in the measuring
of the rolling performance in omnidirectional wheeled mobile robots when the holonomic kinematic constraints
are not fully satisfied. One important reason that causes such dissatisfaction is the slip presents at wheels and,
consequently, the inappropriate conditions for the rolling. The appropriate rolling conditions for omnidirectional
wheeled mobile robots are defined by zero slip rate (i.e., ṡ = 0) and nonzero slip (i.e., s 6= 0) (Fernández
et al., 2012). By using the singular perturbation theory the slip can be included into overall dynamic of the
mobile robot and it is possible to project control actions that mitigate the slip. Here, an expression to measuring
the slip rate is derived in order to accessing the rolling performance in the mobile robot. Supporting us in such
expression is possible to choose the suitable control law that ensures fully the appropriate rolling conditions. This
methodology was applied in an experimental platform called AxeBot that is being constructed in the Robotics
Laboratory at University Federal of Bahia and that uses odometry for the self-localization.

Keywords— Omnidirectional mobile base, slip, corrective control actions, rolling performance, singular per-
turbation theory.

Resumo— Este trabalho propõe um método para escolher leis controle apropriadas apoiado na medida do
desempenho do rolamento em robôs móveis omnidirecionais quando as restrições cinemáticas holonômicas não
são completamente satisfeitas. Uma das razões mais importantes que causa tal insatisfação é o escorregamento
presente nas rodas e, consequentemente, as condições inapropriadas de rolamento. As condições apropriadas de
rolamento para robôs móveis omnidirecionais são definidas por uma variação de escorregamento nula e por um
valor de escorregamento diferente de zero (Fernández et al., 2012). Pelo uso da teoria de perturbações singulares
o escorregamento pode ser inclúıdo na dinâmica geral do robô e é posśıvel projetar leis de controle que atenuam
o escorregamento. Aqui, uma expressão para medir a variação do escorregamento é derivada a fim de acessar o
desempenho do rolamento no robô móvel. Apoiando-nos em tal expressão é posśıvel escolher a lei de controle
adequada que garante a satisfação das condições de rolamento apropriada. Esta metodologia foi aplicada em uma
plataforma experimental chamada Axebot que está sendo constrúıda no Laboratório de Robótica da Universidade
Federal da Bahia e que usa odometria para sua auto-localização.

Palavras-chave— Base móvel omnidirecional, escorregamento, ações de controle corretivas, desempenho do
rolamento, teoria de pertubações singulares.

1 Introduction

In this paper we have formulated a methodology to
choose the suitable control laws such that the ap-
propriate rolling conditions are satisfied (Fernández
et al., 2012). We apply our methodology to validate
a control law with corrective actions for the trajec-
tory tracking problems in the AxeBot, an omnidirec-
tional wheeled mobile robot (OWMR) that is being
constructed in the Robotics Laboratory at Univer-
sity Federal of Bahia for research and development
of the trajectory control (see Fig. 1(a)). To imple-
ment this methodology is considered that omnidirec-
tional motion of the Axebot do not satisfy its holo-
nomic kinematic constraints as a consequence of the
slippage. A condition usually considered for trajec-
tory tracking problems in mobile robots is the ideal
rolling assumption, i.e., the wheels of a mobile robot
are assumed to roll without slipping. But disregar-

ding the slip of wheels in the dynamic model leads
us to path tracking problems (Fernández and Cer-
queira, 2009a; Motte and Campion, 2000). When the
robot is either accelerating, or decelerating, or cor-
nering at a high speed the wheel slip becomes an is-
sue and the ideal rolling assumption is not satisfied
(Fernández and Cerqueira, 2009b; Fernández and Cer-
queira, 2009a). If the slip is not taken into account,
a designed task may not be completed and a stable
system may even become unstable. One of the most
important reasons for this problem is when the trajec-
tory tracking is made by using odometry to calculating
the cartesian position. This methodology has been wi-
dely used, largely because of its easy implementation,
but its disadvantage is the unlimited accumulation of
errors in the control scheme due to slip in the wheels,
among other intrinsic properties of the surface motion
(Song and Wang, 2009; Ivankjo et al., 2004; Bahari
et al., 2008; Trojnacki, 2013). In the AxeBot, the self-
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Figura 1: Photograph of (a) the experimental platform AxeBot
and (b) Kinematic structure of the omnidirectional wheeled
mobile robot with global frame {G} and local frame {R}.

localization is made with Odometry, thus this platform
offers a convenient problem situation which will allow
to verify if the control law applied will guarantee a
good rolling performance.

With the problem of the slipping we have consi-
dered that the AxeBot can be modeled by a singularly
perturbed model. Assuming that there exists an inva-
riant manifold for the slip, corrective control actions
are projected by using the singular perturbation the-
ory such that slip in the wheels is mitigated (Motte
and Campion, 2000; D’andréa-novel et al., 1995). We
propose to use an expression to caracterize the slip
rate related to trajectory tracking problems as tool to
measuring the rolling performance. By using the expe-
rimental platform AxeBot such tool is used as support
to choose the suitable control law.

This paper is organized as follows: In Section
2, the key aspects regarding OWMRs and the inclu-
sion of slip nonlinearity into the proposal of the sin-
gularly perturbed model are discussed. In Section 3
is shown the proposal to measuring the rolling per-
formance. In Section 4 an invariant manifold for slip
is defined and computed such that corrective control
actions can be projected to minimize the errors into
the control scheme due to the existence of slip. In
Section 5 the proposed approach is used for accessing
the achievable closed-loop performance with the cor-
rective control actions projected and it is discussed
the observations obtained. Finally, conclusions and
closing remarks are shown in Section 6.

2 Mathematical Dynamic Model

The configuration of AxeBot mobile robot can be fully
described by the vector q ∈ R

6 of generalized coordi-
nates defined by

q = [x1 x2 θ φ1 φ2 φ3]
T

where {x1, x2, θ} is the set of coordinates associated
with the cartesian position of the local frame {R} into
the global frame {G} and guidance of mobile base,
and {φ1, φ2, φ3} is the set associated with the angular
position of each wheel [which can not be controlled
independently] (see Fig. 1(b)).

The kinematic constraints can be expressed as the
Pfaffian constraint (Motte and Campion, 2000)

AT (q)q̇ = 0 (1)

where A(q) is the matrix with the holonomic kinema-
tic constraints defined by

A(q) =





− sinα sin θ sinβ
− cosα − cos θ − cos β

b b b
r 0 0
0 r 0
0 0 r



 ,

[

A1(θ)

A2(θ)

]

,

where α = θ − 2π
3
, β = θ + 2π

3
, b is the displacement

from each of driving wheels to the axis of symmetry
of mobile base, r is the radius of each wheel.

Provided that the ideal kinematic constraints are
not satisfied [i.e., AT (q)q̇ 6= 0], then the generalized
velocity vector q̇ may be written as

q̇ = S(q)v + A(q)εs, (2)

such that

AT (θ)S(q) = 0, (3)

where

S(q) =






cos θ sin θ 0
− sin θ cos θ 0

0 0 1
−
√

3/2r 1/2r b/r
0 −1/r b/r

√
3/2r 1/2r b/r




 ,

[

S1(θ)

S2(θ)

]

,

is the Jacobian, v = [v1 v2 v3]
T is the vector that con-

tains the velocities at the wheels and s = [s1 s2 s3]
T

contains the slip at each wheel. This last one can
be considered as instrumental vector in sense of acces-
sing the violations of the ideal kinematic constraints in
OWMRs. It is important to mention that when there
is slip, the vector q becomes an apparent quantity q̃.

As usual, the dynamic model for such mobile base
is given by

Mq̈ = Λ +Buε + A(θ)λ (4)

where M = diag (M M Ic Iw Iw Iw), Λ = 06×1, B =
[
03×3

I3×3

]

are the inertia matrix, the centripetal and co-

riolis torques [equal to zero because is assumed that
the geometrical center coincides with the mass center]
and a full rank matrix, respectively. The parameter
M is the mass of mobile base, Ic is the moment of
inertia of mobile base about a vertical axis through
the intersection of the axis of symmetry with the dri-
ving wheel axis and Iw is the moment of inertia of
each driving wheel about the wheel axis. The vector
uε represents of the input forces or torques provided
by the actuators and λ ∈ R

3 represents of Lagrange
multipliers (Balakrishna and Ghosal, 1995).

2.1 Singularly perturbed model

The singularly perturbed formulation to the dynamic
of AxeBot is defined by the following state-space des-
cription:

ẋ = B0(q)v + [εB1(q) + B2(q)] s+ B3(q)uε (5)

εṡ = C0(q)v + [εC1(q) + C2(q)] s+ C3(q)uε (6)

y = P0(q) (7)

where x =
[
qT vT

]T
can be used to denote the “slow”

variables and s beyond its instrumental meaning can
be used to denote the “fast” variables; ε is a small
positive parameter, uε = [uε,1 uε,2 uε,3]

T are the ma-
nipulated inputs associated with the torques at the
motors and y = [y1 y2]

T are the cartesian coordinates



of a point p located at a distance L of the symmetry
axle of the robot, i.e.:

y = P0(q) ,
[

x1−L sin θ
x2+L cos θ

]

= P0(θ). (8)

The above matrices Bi(q), Ci(q), for i = 0, 1, 2, 3,
are successively:

B0(q) =

[
S(θ)

a1 a2 a3
a4 a5 a6
a7 a8 a9

]

, B1(q) =

[
A(θ)

a10 a11 a12
a13 a14 a15
a16 a17 a18

]

,

B2(q) =

[
06×3

a28 a29 a30
a31 a32 a33
a34 a35 a36

]

, B3(q) =

[
06×3

a19 a20 a21
a22 a23 a24
a25 a26 a27

]

,

C0(q) =
[ a37 a38 a39
a40 a41 a42
a43 a44 a45

]

, C1(q) =
[ a46 a47 a48
a49 a50 a51
a52 a53 a54

]

,

C2(q) =
[ a64 a65 a66
a67 a68 a69
a70 a71 a72

]

, C3(q) =
[ a55 a56 a57
a58 a59 a60
a61 a62 a63

]

,

being ai, for i = 1, . . . , 72, known values and defined
by

ai , ai(vη, δ,Do, Go),

where the parameter vη is the velocity of the wheel
center and δ is a “small” positive constant to avoid the
numerical problem for small values of vη [i.e., for small
values of vη , it is replaced by vη + δ]. The parameters
Do and Go are normalized values defined by

Do = εD and Go = εG,

where D and G are the stiffness coefficients for the
transversal and longitudinal movements of each wheel,
respectively.

Assumption 1 The longitudinal and transversal
stiffness coefficients (G and D, respectively) are the
same for the three wheels and

ε = inf{1/G, 1/D}.

Assumption 2 The velocities of the three driving
wheels at their center are taken to be identical, and
more precisely, equal to their average:

vη =
(

ẋ2
1 + ẋ2

2 + θ̇2
)1/2

. (9)

2.2 Interaction forces at wheels

Since OWMRs have only constraints associated with
rolling conditions, in this work, the contact forces are
represented in terms of the relationship between the
longitudinal slip ratio of each wheel, si, and its res-
pective friction coefficient µi.

Assumption 3 The friction coefficients µi (for i =
1, 2, 3) are taken to be identical due to symmetric mass
distribution, and more precisely, equal to

µi = Mr
3

Mg
v̇i , zov̇i

where Mr is the mass of each driving wheel and g is
the gravity.

Burckhardt’s model, for instance, can be used to
describe the nonlinear characteristics of the contact
forces (Fernández et al., 2012; Canudas de Wit et al.,
2003). For our purpose, this map is defined by

µi = c1
(
1− e−c2si

)
− c3si

∣
∣
∣
c1=1; c2=2; c3=0.1

, (10)

for i = 1, 2, 3. Where the parameters c1, c2, c3 are
setting for humidity conditions, as shown in (Canudas
de Wit et al., 2003). In this mapping si ∈ [−1,+1]
and µi ∈ R.

3 Rolling dynamic analysis

The appropriate rolling conditions in the OWMR mo-
tion can be defined by

{

s 6= 0

ṡ = 0.
(11)

The condition s 6= 0 means that the mechanical
torques are not large enough to ensure that the wheel-
surface contact point stay stationary. It is important
to point out that such condition is an inherent and
proper feature of OWMRs motion (Fernández et al.,
2012; Balakrishna and Ghosal, 1995).

3.1 Proposal to measuring the rolling performance

The rolling dynamics are analyzed according to the
satisfaction of the appropriate rolling condition defi-
ned in (11). In following will be presented an analysis
associated with the longitudinal rolling that will allow
to define a criteria to choose a suitable control law.

The apparent linear velocities of wheels can be
associated with the apparent linear velocity of the mo-
bile base by using (2) and via the pseudo-inverse ma-
trix S+(q)

v = S+(q) (q̇ −A(q)εs)

, S+(θ)
[

ẋ1 − A1(θ)εs . . . φ̇3 − A6(θ)εs
]T

, S+(θ)
[

˙̃x1
˙̃x2

˙̃
θ . . .

˙̃
φ3

]T

︸ ︷︷ ︸
˙̃q

where Ai(θ) represent the i-th row of A(θ).
By using the Assumption 3 we have

µ = zov̇,

and by defining the components of S+(θ) as πij(θ),
the i-th friction coefficient can be expressed by

µi = zov̇i,

µi = zo
d

dt

(

πi1
˙̃x1 + . . .+ πi3

˙̃
θ + . . .+ πi6

˙̃
φ3

)

,

µi = zo

(
∂πi1

∂θ̃

˙̃
θ ˙̃x1 + πi1

¨̃x1

+
∂πi2

∂θ̃

˙̃
θ ˙̃x2 + πi2

¨̃x2 +
∂πi3

∂θ̃

˙̃
θ2 + πi3

¨̃
θ

+
∂πi4

∂θ̃

˙̃
θ
˙̃
φ1 + πi4

¨̃
φ1 +

∂πi5

∂θ̃

˙̃
θ
˙̃
φ2 + πi5

¨̃
φ2

+
∂πi6

∂θ̃

˙̃
θ
˙̃
φ3 + πi6

¨̃
φ3

)

,

since S+(θ) depends only on θ. Taking the time deri-
vative of µi yields

µ̇i =zo

(
d

dt

(
∂πi1

∂θ̃

˙̃
θ

)

˙̃x1 + 4
∂πi1

∂θ̃

˙̃
θ ¨̃x1

+
d

dt

(
∂πi2

∂θ̃

˙̃
θ

)

˙̃x2 + 4
∂πi2

∂θ̃

˙̃
θ ¨̃x2

+
d

dt

(
∂πi3

∂θ̃

˙̃
θ

)

˙̃
θ + 5

∂πi3

∂θ̃

˙̃
θ
¨̃
θ

+
d

dt

(
∂πi4

∂θ̃

˙̃
θ

)

˙̃
φ1 + 4

∂πi4

∂θ̃

˙̃
θ
¨̃
φ1

+
d

dt

(
∂πi5

∂θ̃

˙̃
θ

)

˙̃
φ2 + 4

∂πi5

∂θ̃

˙̃
θ
¨̃
φ2

+
d

dt

(
∂πi6

∂θ̃

˙̃
θ

)

˙̃
φ3 + 4

∂πi6

∂θ̃

˙̃
θ
¨̃
φ3

+ πi1

...
x̃ 1 + . . .+ πi3

...
θ̃ + . . .+ πi6

...
φ̃3

1
)

. (12)



For uniformly accelerated motion, we have that
...
x̃ 1 ≈

0, · · · ,
...
θ̃ ≈ 0, · · · ,

...
φ̃ 3 ≈ 0. Thus, one may simplify

(12) to

µ̇ = zo
[

π̈i1 . . . π̈i3 . . . π̈i6

]
˙̃q

+ zo
[

4π̇i1 . . . 5π̇i3 . . . 4π̇i6
]
¨̃q

= zo
[

π̈i1 . . . π̈i3 . . . π̈i6
]
˙̃q

+ zo
[

π̇i1 . . . π̇i3 . . . π̇i6

]
Γ¨̃q (13)

where Γ , diag (4 4 5 4 4 4).
By using (10) and the chain rule for differentia-

tion,
dsi

dt
=

dsi

dµi
µ̇i =

(
1

c2e−c2µi − c3

)

µ̇i,

one may use (13) to obtain

ṡi = zo

(
1

c2e−c2µi − c3

)
(
[π̈i1 . . . π̈i3 . . . π̈i6] ˙̃q

+ [π̇i1 . . . π̇i3 . . . π̇i6] Γ ¨̃q
)
, (14)

as an alternative expression for ṡi. However, since
s 6= 0 and the map in (10) is a C1-diffeomorphism
then

zo

(
1

c2e−c2µi − c3

)

︸ ︷︷ ︸
dsi
dµi

6= 0,∀t. (15)

Now, defining that

Rµ , diag
(

zo
ds1
dµ1

zo
ds2
dµ2

zo
ds3
dµ3

)

, ∀ s,

one may express (14) in the following compact form

ṡ = RµS̈
+(θ) ˙̃q +RµṠ

+(θ)Γ¨̃q. (16)

3.2 Measuring the traction performance

The above expression gives an alternative differential
equation to represent the rolling dynamic at the whe-
els and with it, we can analyze if the appropriate rol-
ling conditions in (11) are satisfied. Thus, by using of
the 2-norm ‖ · ‖2, our objetive can be defined by

‖ṡ‖2 → 0, when t → ∞. (17)

4 Control on an invariant manifold

An invariant manifold for slip is introduced and defi-
ned by

s = Hε(x, uε, ε) (18)

in order to make that the tracking error will converge
to zero and it guaranteing the appropriate rolling con-
ditions for a smooth feedback control law uε.

4.1 Computing the invariant manifold

We prefer to construct the linearizing control law as
well as the corresponding Hε assuming these functions
to be analytic. Thus, these functions and their time
derivatives can be developed under the form of Taylor
series expansion:

uε = u0 + εu1 + ε2u2 + . . .+ εNuN (19)

Hε = H0 + εH1 + ε2H2 + . . .+ εNHN (20)

Ḣε = Ḣ0 + εḢ1 + ε2Ḣ2 + . . .+ εN ḢN , (21)

where N can be considered a robust term.

By substituting (19)-(21) in (5)-(6) gives

ẋ = B0(q)v +B2(q)H0 + B3(q)u0+

ε [B1(q)H0 +B2(q)H1 + B3(q)u1] +

ε2 [B1(q)H1 + B2(q)H2 +B3(q)u2] + . . .

εN [B1(q)HN−1 + B2(q)HN +B3(q)uN ] (22)

and

ε
[

Ḣ0 + εḢ1 + ε2Ḣ2 + . . .+ εN ḢN

]

=

C0(q) v + C2(q)H0 + C3(q) u0+

ε [C1(q)H0 + C2(q)H1 + C3(q)u1] +

ε2 [C1(q)H1 + C2(q)H2 + C3(q)u2] + . . .

εN [C1(q)HN−1 + C2(q)HN + C3(q)uN ] , (23)

and equating like powers of ε in (23) gives the following
recursive expression for the termsHk, for i = 1, . . . , N ,
in (20):

Hk = C−1
2 (q)

[

Ḣk−1 − C1(q)Hk−1 − C3(q)uk

]

. (24)

For k = 0, (24) do not offer sufficient information to
calculate H0 in (20). So, from (6), for ε = 0, the
component H0 can be calculated as

H0 = −C−1
2 (q) [C0(q) v + C3(q) u0] , (25)

where u0 is the first component into the Taylor serie
expansion defined in (19). The eq. (25) is knowing
as “slow” manifold. The terms Hk for k > 0 implies
that the trajectories of system (5)-(7) move on a slight
variation of the “slow”manifold1. In the same way, uk

for k > 0 implies that the control law is composed
by the main control law, in this work defined by u0,
and the corrective control actions [i.e., the terms with
powers of ε greater than 0 in (19)].

4.2 Control design

The control law is projected on the inverse dynamics
of (4) and the output equation (8). This is defined by

u0 =
[

ST (θ)B
]−1 [

ST (θ)MS(θ)
]

E−1(θ)
[

ρ− Ė(θ) v
]

(26)
with

E(θ) =
∂P0(θ)

∂(x1, x2, θ)
S1(θ) =

[
cos θ sin θ −L cos θ

− sin θ cos θ −L sin θ

]

ensures the dynamics of AxeBot to be v̇ = ρ, where ρ
is an auxiliar control variable defined by

ρ =
[

ẍr
1 ẍr

2 θ̈r
]T

−K2 e−K1 ė (27)

in order to insure tracking of the reference trajectory
defined by the vector [xr

1 xr
2 θr]T . The tracking error,

e, and its derivative, ė, are defined by

e = [x1 x2 θ]T − [xr
1 xr

2 θr ]T

ė = S1(θ)v + A1(θ)εHε −
[

ẋr
1 ẋr

2 θ̇r
]T

where Hε is the manifold defined in (18) and
{K1 , K2} ⊆ R

3×3 are arbitrary positive definite ma-
trices such that the desired dynamic represented by
(27) is Hurwitz (Motte and Campion, 2000).

1That slight variation of the “slow” manifold is called
the “fast” manifold.



4.3 Computing the corrective control actions

From (22), the set of corrective controls u1, u2, . . . , uN

are simply designed to annihilate the set of terms
ε, ε2, . . . , εN , respectively. That is,

u1 = −B+
3 (q) [B1(q)H0 +B2(q)H1]

u2 = −B+
3 (q) [B1(q)H1 +B2(q)H2]

...

uk = −B+
3 (q) [B1(q)Hk−1 + B2(q)Hk ] (28)

for k = 1, 2, . . . , N , where B+
3 (q) is the pseudo-inverse

of B3(q).

5 Experimental results

The manifold defined by (18) and the rolling dynamic
defined by (16) allow to evaluate of the control laws
used for the trajectory tracking in the omnidirectional
robot AxeBot and to observe how the corrective con-
trol actions attenuate the violation at the appropriate
rolling conditions.

In this work we projected two corrective controls,
i.e., the degree of robustness is N = 2 and the cor-
rective control actions u1, u2 are associated to the
annihilation of ε and ε2. Thus, by using (28) these
corrective controls are:

u1 = (B2C
−1
2 C3 − B3)

+
(

B1H0 +B2C
−1
2 Ḣ0

−B2C
−1
2 C1H0

∥
∥
∥

)

and

u2 = (B3 −B2C
−1
2 C3)

+
[∥
∥
∥(B2C

−1
2 C−1

2 C3)u̇1

− (B2C
−1
2 C1C

−1
2 C3 − B1C

−1
2 C3)u1

−B2C
−1
2 C−1

2 Ḧ0 −
(

B2C
−1
2 C1C

−1
2 C1

− B1C
−1
2 C1

)

H0 − (B1C
−1
2

− B2C
−1
2 C−1

2 C1 −B2C
−1
2 C1C

−1
2

)

Ḣ0

]

.

The experimental platform AxeBot is composed
of two main modules: a microprocessor system respon-
sible for the implementation of the instrumentation
and the time base generation module (sample time of
50 ms) that creates a real time clock. The high-level
controllers are implemented on a personal computer.
These modules communicate through a Zigbee plat-
form composed by two Maxstream’s Xbee modules.
The robot odometry data and the control signals (mo-
tors voltages) are transmitted serially through 32-byte
packets at a rate of 57600 b/s. The DC motors are of
A-max 22 type (nominal voltage: 6 V, power rating:
5 W) developed by Maxon Motors, and they are con-
trolled by H-bridge circuits made by Acroname Robo-
tics (part no. S17-3A-LV-BRIDGE). The control algo-
rithms were implemented via Lazarus IDE software for
Linux/Ubuntu operation systems on a Pentium Core
i7 @ 2.8 GHz.

The parameters used in the experiments are: L =
0.12m, r = 0.0349m, M = 1.83Kg, Ic = 0.0132 Kg-
m2, Iw = 0.216 × 10−4 Kg-m2, δ = 0.1. To analyzing
the rolling performance the matrix Rµ is defined as:

Rµ = diag
(
zo

ds1
dµ1

∣
∣
s∼0

zo
ds2
dµ2

∣
∣
s∼0

zo
ds3
dµ3

∣
∣
s∼0

)

= diag ( zoη zoη zoη )

with zo = 5.620 × 10−3 (with Mr = 0.0336 Kg) and
by considering small values of longitudinal slip (less
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than 0.1) the derivatives dsi
dµi

are approximated by η =

10/19. From Assumption 1, ε = 10−10 for D = 4×109

and G = 1010. The reference dynamic was defined by
K1 = 23 I3×3 and K2 = 70 I3×3 which is a critically
damped second-order system with poles at -19.38 and
-3.61. The reference trajectory is a circle with radius
1 m.

In this paper was used (16) and (17) as a way to
observing the rolling performance of mobile base at
different reference trajectories at experimental results
and finally to choose the suitable control law.

5.1 Circular trajectory and discussion of results

In Fig. 2 is shown the trajectory tracking of the circle.
In Fig. 3 is shown the behavior of ṡ around the con-
dition ṡ = (0, 0, 0). Clearly, the concentration of all
points associated with this slip rate ṡ are around the
origin (0,0,0). In the time domain the norm ‖ṡ‖2 was
used as a way of understanding the total behavior of
slip into the overall dynamic of Axebot (see Fig. 4).
The behavior observed at Fig. 4 show that the appro-
priate rolling condition ṡ = 0 defined by (11) has a
behavior more near to zero when used the control law
with two corrective control actions [i.e., u0+εu1+ε2u2]
(see the inset at Fig. 4). The other condition s 6= 0
is a direct consequence of the behavior of norm ‖ṡ‖
when t → ∞. To explain this, one can proof that
the kinematic constraints are not ever satisfied, i.e.
AT (q)q̇ 6= 0.

From observations in Fig. 4 we can affirm that
‖ṡ‖ → 0 for t → ∞. Consequently, limt→∞ ṡ = 0
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and limt→∞ s > 0, or limt→∞ s < 0, or limt→∞ s = 0.
Multiplying both sides of (2) by AT (θ) yields

AT (θ)q̇ = AT (θ)S(θ)v + AT (θ)A(θ)εs

= AT (θ)A(θ)εs (By using (3)) (29)

and since the model (5)-(7) assume that the kine-
matic constraints are not satisfied [i.e., AT (q)q̇ 6= 0
and ε 6= 0], then can be verified that the option
limt→∞ s = 0 contradize this assumption when such
option is substituted in (29). Thus

lim
t→∞

s 6= 0

and we have proved the satisfaction of the appropriate
rolling condition s 6= 0.

6 Final remarks

Here, we used an alternative expression for the rolling
in an omnidirectional robot [the AxeBot] to observing
the slip behavior around the appropriate rolling con-
ditions, ṡ = 0 and s 6= 0. Considering the slip as a
fast variable within the overall dynamic of the mobile
robot is proposed a model based on theory of singular
perturbations and consequently projected corrective
control actions that mitigate the influence of the slip.
The AxeBot has a mechanism of self-localization in the
workspace based on odometry, thus the AxeBot give
us a convenient problem-situation to testing problems
arising from the presence of slip at the wheels. With
the experimental information associated with the tra-
jectory tracking is used the norm of the slip rate defi-
ned by (16) as support to choosing what is the suitable
control law.

Currently, the methodology presented in this pa-
per will be extended for wheeled mobile robots with
nonholonomic and quasi-holonomic kinematic cons-
traints that have controllers based in others theore-
tical approaches different of the singular perturbation
theory.
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