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Abstract We propose a visual method to be used in autonomous vehicles to track the position of horizontal road lane marks. 

Our method is based on filtering with prediction. The prediction step estimates the expected lane mark position in each new im-

age frame. It is also based on the kinematic model of the car and on the information generated by the embedded odometric sen-

sors. Experimental results obtained using a properly prepared test vehicle demonstrated that the prediction step is responsible for 

a significantly tracking error reduction under certain conditions, like oscillations and lane change. Therefore, we believe that our 

method can improve system performance when applied to image-based controlled autonomous vehicles. 
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Resumo Propõe-se um método visual a ser utilizado em veículos autônomos para seguir a posição das faixas horizontais de 

estradas. O método baseia-se em filtragem com predição. A etapa de predição provê uma estimativa da posição esperada da fai-

xa da estrada a cada novo quadro de imagem. Tal etapa baseia-se também no modelo cinemático do carro e na informação gera-

da pelos sensores odométricos incorporados. Os resultados experimentais obtidos utilizando um veículo de teste adequadamente 

preparado demonstraram que há redução significativa do erro de seguimento de faixas em certas condições, como oscilações e 

trocas de faixa. Portanto, acreditamos que o método aqui proposto pode melhorar o desempenho do sistema quando aplicado a 

veículos autônomos controlados com base em imagem. 

Palavras-chave Veículos autônomos, Visão computacional, Seguidor de pista. 

1    Introduction 

To make a car drive itself is certainly one of the 

greatest challenges of modern automation. On one 

side, auto-pilots for airplanes and ships are well 

known and widely used. On the other side, due to the 

much greater complexity, for cars and trucks this 

technology is still being developed. The goal is to 

make the car drive autonomously from address A to 

address B, as safely as (or safer than) an experienced 

human driver. Under these conditions, the user be-

comes just a passenger. 

For a car, a fundamental requirement of an au-

tonomous driving system is the ability to keep the 

vehicle within the road and drive in the center of its 

lane. This requires knowledge of the surrounding 

environment, which is obtained through sensors in-

stalled in the car, such as camera, LASER scanning, 

GPS, and inertial units, for example. 

Projects like (NASHMAN, 1992), (SCHNEI-

DERMAN, 1994), (POMERLEAU, 1996), (BROG-

GI, 1999) and (LU, 2002) rely only on a gray-scale 

images generated by a camera for detecting the posi-

tion of the road and its estimate curvature. In 

(CHRISMAN, 1998) and (SALES, 2010) color im-

ages were used to classify the regions belonging to 

the road. This idea was also applied in 

(DAHLKAMP, 2006) in order to extend the range of 

the system beyond the range of the LASER range-

finder (LRF) sensors used on their autonomous the 

vehicle.  

Stereo vision systems allow the calculation of 

distance of the objects on the scene. A binocular vi-

sion system (stereo vision) was used in (BROGGI, 

2010) and (LIMA, 2010) for obstacle detection. But, 

this kind of system has the drawback of being of high 

computational cost. 
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Projects like (GUIZZO, 2011) and (autonomous 

LABS, 2012) use the LRF sensor in conjunction with 

cameras, GPS, IMU and map information to lead 

autonomous driving research to an unprecedented 

level. Missions of autonomous navigation in real ur-

ban environment have been completed successfully 

by both projects. 
In Brazil this field of research is starting to de-

velop and we highlight some: Driving 4 You, from 

UNIFEI (VEERMAS et al., 2010), CADU, from 

UFMG (LIMA, 2010), VERO, from CTI / Campinas 

(VERO, 2012), SENA, from EESC / USP (SENA, 

2012), and CARINA (CARINA, 2010), developed at 

ICMC / USP. Another group in our university 

(UFES) is also developing an autonomous car pro-

ject. They bought a car with the main hardware com-

ponents already installed, and their main focus is on 

the software side. Their main goal is to understand 

how the human brain interprets the world using im-

ages (LCAD, 2013). On the other hand, the main 

objective of our project is to build an autonomous car 

with simple and low computational costs solutions. 

We are adapting a regular car by installing actuators 

and sensors in order to achieve this goal. Our car is 

already able to drive itself on real roads, under con-

trolled conditions (VIVACQUA et al., 2012). 

Our system consists on a notebook computer that 

is connected to a USB camera and an interface board. 

The USB camera is installed on the front windshield, 

pointing towards the road. The interface board con-

nects the computer to the car encoders, and to the 

step-motor that is responsible for the driving wheel 

positioning. 

The visual information generated by the compu-

tational vision system is subjected to noise or errors 

caused by occlusions, reflexes, shadows etc. To min-

imize the effect of these problems a filtering process 

is executed over the raw image to produce more reli-

able information. This information is the base for the 

so called model state, and is fed back into the vision 

algorithm to define the image region of interest (ROI) 

(see Fig. 1). In (VIVACQUA et al., 2012) this infor-

mation is also used by the controller to keep the au-

tonomous car driving in the center of the road. 

Some methods for visual lane track have been 

proposed (SCHNEIDERMAN, 1994), (AUFRERE, 

2000), (LU, 2002) and (CHOI, 2012). All of them 

use some kind of filtering process to update its model 

state (parameters that descript the lane marks), but 

none use prediction. To implement prediction, vehi-

cle displacement information must be accessible and 

reliable. We have made the necessary adaptations in 

our autonomous car and in this paper we present our 

proposal for a visual method to track the position of 

horizontal road lane marks, which is based on filter-

ing with prediction. The prediction step estimates the 

expected lane mark position in each new image frame 

in order to minimize tracking error. The following 

sections present an explanation of our system and 

discuss some experimental results. 

2   Reference Systems 

Before making the prediction step, it is necessary 

to change the system reference frame from the cam-

era’s frame to the car’s reference frame, considering 

the camera in the origin (own reference – OR). The 

horizontal lane marks detected by the vision system 

that is being used in the autonomous car (VIVAC-

QUA, 2012) are mapped through inverse perspective 

projection (Fig. 2) as if the image was seen from the 

sky, assuming that the road is perfectly plane (bird’s 

eye view). 

 
Figure 2. Reference system: (A) Camera frame; (B) Car frame. 

Figure 1: Visual information flow to generate the model state. 



In the OR frame, the origin is the point exactly 

below the camera in the ground plane, the Z axis cor-

responds to the car displacement direction (while 

moving forward), and the X axis is the transversal 

direction. Figure 2 (B) shows two guide lines (Left 

and Right) corresponding to the detected information 

in the image of Figure 2 (A). The basic idea of the 

prediction step is that it is possible to predict the car 

position in the next image frame based on its kine-

matic model and on the lane marks positions on the 

actual frame. 

3   Car kinematic model  

The car kinematic model can be approximated by a 

bicycle model presented in Figure 3. In this Figure: 

Pr is the center of the circumference that describes 

the car trajectory; 

Pc is the camera position in the vehicle (OR origin); 

R is the trajectory curvature radius described by Pc; 

Lt is the distance between the car front and rear axes; 

Lr is the distance between the OR origin and the rear 

axis; 

α is the front wheel turning angle. 

 

 
Figure 3: Car kinematic Model. 

 

Using the car kinematic model (Eq. 1) we can calcu-

late the vehicle trajectory in the world reference 

frame (WR) given its parameters and the front wheel 

turning angle (α). 
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where x, z and θ are the position and orientation of 

the vehicle in WR, and v is the car linear velocity. It 

is important to note that the origin of WR is fixed in 

the ground and not in the car. Thus, as the car moves, 

the point Pc describes the dotted trajectory, and the 

position of fixed objects in the world is kept constant. 

4   Position Prediction 

In the OR reference frame the point Pc coincides with 

the origin and the fixed objects in the world turn 

around Pr, but in reverse direction.Figure 4 presents 

the initial position of a fixed object in the world seen 

in the OR reference system. It is possible to estimate 

the future position based on the information of initial 

position and the trajectory defined by the kinematic 

model.  

The rotation Center (Pr), the curvature radius of the 

camera trajectory (R) and the angular displacement 

(Δθ) are calculated using (2), (3) and (4), that make 

use of the car odometric information. 

 
Figure 4: Prediction of an object position: (a) Right corner; 

(b) Left corner; (c) Straight. 

 

The distance travelled in meters (obtained through an 

encoder localized in the front axis), and the front 

wheel turning angle (α) (obtained through another 

encoder installed in the driving wheel axis): 
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where ΔL is the travelled distance. 

5   Rotation of a Parabola 

To estimate the new position of any object, one just 

has to know the rotation center (Pr), the rotating an-

gle (Δθ), and apply a 2D rotation operation. In the 

specific case of the autonomous vehicle described in 

(VIVACQUA, 2012), where the system was tested, 

the tracked objects are the two road lane marks that 

compose the road model. Each one of this marks is 

represented by a 2
nd

 degree polynomial. 

. 

, (5) 

 



Given a point (X, Z) of the rotated parabola, we 

can find the corresponding point (x, z) in the original 

parabola through the rotation operation in the reverse 

direction, given by  

 

, (6) 
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where Px and Pz are the coordinates of the rotation 

center. Substituting (6) and (7) in (5) we get to the 

general form of the rotated parabola: 

 

. (8) 

 

This form is incompatible with the original data 

structure used in the software and do not allow the 

explicit calculation of X given Z, which is computa-

tionally undesirable. To circumvent this problem, we 

propose a method to find a good approximation to 

the rotated parabola keeping the default form given in 

(5). 

Consider the rotated parabola equation  

 

. (9) 

The problem we need to solve is to find the coeffi-

cients a2r, a1r and a0r. The general idea to solve this 

problem is: Find the central point M of the original 

parabola x(z) in the interval [z0..z1]; apply a rotation 

of Δθ around the point Pr (thus making M turns into 

Mr); Consider that Mr belongs to the new parabola 

xr(z); and consider that the direction of the tangent in 

this point was subtracted by the rotation angle Δθ. 

The inclination of the tangent line in the point M 

is given by . Using the property 

of tangent difference, we have: . 

As the rotated parabola curvature is not altered, we 

have a2r = a2. The term a1r can be calculated by 

, and the term a0r is calculat-

ed by . By doing 

so, we have the rotated parabola parameters in the 

OR reference frame. 

 

 
Figure 5: Approximation for the rotated parabola. 

6   Filtering 

We are considering that the lane mark position 

cannot change much in consecutive frames, and a 

great amount of noise lead to fast image variation 

(such as reflection or occlusion). For this reason, we 

chose to use a first order low pass filter, which time 

constant was defined experimentally taking into ac-

count its influence on the system behavior: if the val-

Figure 6: Experiment conditions: (A) Left corner; (B) Straight; (C) Right corner; (D, E, F) Corresponding paths. 



ue is too low the filtering would have little effect in 

attenuate the sporadic erroneous measures. On the 

other hand, if it is too high, this would delay the re-

sponse, and would cause difficulties to the model in 

following the slow changes in the road shape that 

occurs before and after corners, for example. After 

testing with videos captured with the vehicle camera 

at the speed of 80km/h, we found that the value of τ 

= 3 produced a good compromise between robust-

ness and response velocity. 

Equation (10) shows vector Wi that represents 

the state model. Equation (11) is the expression for 

the low pass filter that updates the model state from 

the measures generated by the vision system (Ui). 

 

, (10) 

, (11) 

7   Experimental Results 

To measure the performance of the prediction sys-

tem, we performed some experiments using a test 

vehicle properly adapted to acquire the road images 

synchronously with the odometric measurements. 

This vehicle was driven in three curvature conditions 

as Figure 6: (A) In a left corner; (B) In a straight line; 

and (C) in a right corner. In each curvature condition, 

the vehicle was conducted in three different modes 

regarding the oscillation level of the trajectory (Fig-

ures 6 (D) to 6 (F)): Without oscillation (L0), where 

the vehicle travels the road parallel to the guide line; 

with low level of oscillation (L1) where the vehicle 

crosses cyclically the central line; and with high level 

ofoscillation (L2) where the vehicle also crosses the 

central line but with a more accentuated deviation. 

The oscillation was introduced in the trajectory to 

force the vehicle to move not parallel to the road line 

so that the prediction could demonstrate its capacity 

in keeping the model state close to the instantaneous 

measures.  

The tests were conducted in approximate speed of 40 

km/h in a 100m length path and the data (images and 

odometry) was acquired each 40ms. Figure 7 shows 

the registered driving wheel position for each of the 

trajectories of Figure 6. 

The collected data was analyzed in the laboratory to 

evaluate the system performance comparatively (with 

and without use of prediction). The performance in-

dex used was the absolute horizontal average error 

(AHAE) calculated as a difference of the curve de-

fined by the model and the one defined by the instan-

taneous measure. 

 

. (12) 

8   Discussion 

Figure 8 presents a frame sequence taken from the 

video obtained in the test that corresponds to the case 

shown in Figure 6(D), for the L2 trajectory. This se-

quence corresponds to the stretch where the vehicle is 

moving away from the central line what can be per-

ceived by the successive displacement of the yellow 

mark to the left. 

 

 
Figure 8: Frame sequence showing the tracking process with and 

without prediction. 

Figure 8 clearly shows that the model that uses filter-

ing and prediction (white dotted line) keeps closer to 

the measure (red continuous line) than the model that 

uses just filtering (black dotted line).This illustrates 

the benefit of our method. 

Another way of perceiving the closer proximity be-

tween the model state and the visual measures is 

Figure 7: Driving wheel position data obtained in the tests. Figure 7: Driving wheel position data obtained in the tests. 



through the graphs in figure 9, that present the pa-

rameters a0(Lane Offset) and a1(Lane Direction) of 

the polynomials of the filtered model and of the fil-

tered model with prediction. The curvature parameter 

(a2) was not presented because it is practically con-

stant in the considered stretch.  

In Figure 9 we can notice the ability of the low pass 

filtering in removing high frequency noise, which 

resulted in a delayed smoother curve (no prediction 

case). With the use of prediction it was possible to 

reduce the undesired delay (prediction). This reduc-

tion occurs because the prediction compensates the 

effect of the car movement over the captured images. 

Figure 10 presents the normalized accumulated error 

(NAE) of the index AHAE for the test condition with 

higher oscillation (L2), where the accumulated error 

with no prediction is considered to be 1. It is calcu-

lated with (13), where n is the total number of frames 

used in the experiment. 

 

. (13) 

 

In all test cases the accumulated error with prediction 

rise in a smaller rate (lower than 0,51) than the accu-

mulated error without prediction. 

The final value of NAE obtained in all tested condi-

tions is summarized in Figure 11. We can notice that 

when the car is driven in trajectories with higher os-

cillation levels, the value of NAE reduces. This oc-

curs because when there is oscillation, the lane marks 

displaces laterally within the camera visual field and 

the use of prediction compensates for this effect 

keeping the model closer to the real measures, while 

maintaining the robustness given by the filtering pro-

cess. We believe that the prediction step will enhance 

the performance of the autonomous vehicle while 

driving under similar conditions. 
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