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Abstract This paper presents an adaptive algorithm to synchronize hyperchaotic finance systems in the presence of unknown 
system parameter and bounded disturbances. Based on Lyapunov-like analysis, an adaptive scheme is proposed to make the syn-
chronization error asymptotically null. Simulation results are provided to demonstrate the effectiveness and feasibility of the pro-
posed synchronization method. 
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Resumo Neste artigo apresenta-se um algoritmo adaptativo para sincronizar sistemas financeiros hiper-caóticos na presença de 
parâmetros desconhecidos e distúrbios limitados. Com base em uma análise tipo Lyapunov-like um esquema adaptativo é propos-
to e provado que o erro de sincronização converge assintoticamente para zero. Simulações são apresentadas para mostrar a apli-
cação e desempenho do método de sincronização proposto.  
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1    Introduction 

Since the chaotic behavior in economics was discov-
ered by Grandmont and Malgrange, 1986, a substan-
tial amount of research has sought to link the role of 
chaos with the inherent randomness in macroeco-
nomics models. This uncertainty can make precise 
financial forecasting very limited, compromising the 
effectiveness of financial policies adopted by the 
government to interfere in an economic system 
(Baumol and Quandt, 1985). In fact, the U.S. sub-
prime mortgage crisis in 2007 illustrated how inef-
fective the government policies were to counteract 
the critical economic behavior that resulted in the 
global economic crisis, which may have resulted 
from the eminently chaotic nature of this financial 
system (Rui-Hong, 2009). Motivated by this theoret-
ical and practical background, modeling and syn-
chronization of nonlinear chaotic finance systems has 
been an active topic of study of many researchers 
(Jun-Hai and Yu-Shu, 2001; Zhao et al., 2011; Yu et 
al. 2012). 

On the other hand, in recent years, chaos synchro-
nization has been applied in several areas such as in 
electrical engineering (Xiao, 2009; Iu and Tse, 
2000), biological systems (Arecchi et al., 2003), 
chemical engineering (Li et. al., 2003) and in secure 
communications (Lu et al, 2002; Sun et al., 2008; 
Dimassi and Loría, 2011). 

Several methods have been proposed to achieve 
synchronization. For instance, nonlinear active con-
trol (Wang et al., 2009a, 2009b; Wang, 2010; Chen 
et al., 2009; Yassen, 2008), adaptive synchronization 
(Al-Sawada et al, 2010; Yang, 2011; Li, 2010; Ye 
and Deng, 2012), backstepping design (Njah and 
Sunday, 2009; Peng and Chen, 2008), and sliding 
mode control (Liu et al., 2009; Chen et al., 2007).  

However, in most of the above works, it is as-
sumed that the slave and master systems are perfectly 
or structurally known, i.e., the presence of unknown 
disturbances is not considered. For instance, the 
techniques in Al-Sawada et al. (2010), Yang (2011), 
Li (2010), Ye and Deng (2012), Zhao et al. (2011), 
and Mahmoud (2012) achieve asymptotic conver-
gence of the synchronization error to zero under the 
crucial assumption of the inexistence of disturbances. 
Although the assumption of free disturbance may be 
interesting from the theoretical point of view, from 
the practical perspective it is a restrictive assumption 
since the presence of disturbances are, in general, 
unavoidable. Typical disturbances include state-
dependent and time-dependent functions, which can 
be introduced, for instance, by unexpected changes in 
the system dynamic due to faults, changes in opera-
tion conditions, aging of equipment, and so on. 

Moreover, it is well-known that adaptive laws de-
signed for the disturbance or modeling error free case 
may suffer from parameter drift. In fact, this lack of 
robustness in adaptive systems in the presence of 



unmodeled dynamics or bounded disturbances was 
reported in the early 1980s. Several robust modifica-
tions to counteract this have been proposed since 
then (Ioannou and Sun, 1995). 

Motivated by the previous facts, in this paper we 
propose a robust adaptive synchronization method to 
control the hyperchaotic finance system described in 
Yu et al. (2012), when bounded disturbances are 
present. In addition, it is assumed that the initial 
conditions and parameters of the finance system are 
unknown. Based on Lyapunov-like analysis (Slotine 
and Li, 1991), the proposed controller ensures the 
convergence of the synchronization error to zero, 
even in the presence of the aforementioned uncer-
tainties. 

2   Problem Formulation 

Consider the hyperchaotic finance system de-
scribed by  
 

utxdxGxfx sssssss +++= ),()()( θ&         (1) 

 

where 4ℜ⊂∈ Mxs  is the state of the slave system, 

M is a compact set, 4ℜ∈u  is the control input, 
(.)sf  and (.)sG  are  known maps, (.)sd  is an un-

known disturbance and θ  is an unknown parameter 
vector,  
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where 1sx  is the interest rate, 2sx  is the investment 

demand, 3sx
 
the price index, and 4sx is the average 

profit margin. Moreover, the parameter a denotes the 
savings, b denotes the investment cost, and c denotes 
the commodities demand elasticity. The parameters d 
and k are associated with the average profit margin. 

 
Remark 1: In case that 0),( =txd ss  and 0=u , 

system (1)-(4) becomes the hyperchaotic finance 
system introduced in Yu et al., (2012). 

 
We assume that the following can be established. 

 

Assumption 1: On the region [ )∞×ℜ ,04  

 

0),( ss dtxd ≤                  (5) 

where 0sd  is a positive constant, such that ss dd <0  

and sd  is a known constant. 

 
Assumption 2: The parameter θ  is upper bounded 

by a known positive constantθ , such that θθ > . 

 
Remark 2: Assumption 1 is quite natural since sys-
tem (1) evolves in a compact set. 
 

Remark 3: Notice that when a = 0.9, b = 0.2, c = 1.5, 
d = 0.2, and k = 0.17, system (1) shows hyperchaotic 
behavior (Yu et al., 2012). 
 

In order to have a well-posed problem, without 
loss of generality, we consider the master system as 
 

θ)()( mmmmm xGxfx +=&                    (6) 

 

where 4ℜ∈mx , θ  is a known parameter vector and  
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Hence, our aim is to design a feedback control u, 

such that the state xs of the slave hyperchaotic system 
(1) tracks the state xm of the master system (6).  

Define the synchronization error ms xxte −=)( . 

Then, from (1) and (6), we obtain the synchroniza-
tion error equation 
 

udGGffe smsms ++−−−−= )
~ˆ)(( θθ&        (9) 

 
Remark 4: It should be noted that in our formulation, 
for sake of simplicity, it was considered that ( )⋅mf  

and ( )⋅sf  have similar structure. However, these 

nonlinear mappings can be unrelated, for instance, to 
include a priori knowledge of the disturbances.  

3   Adaptive Synchronization  

In this section, we considered the problem of as-
ymptotic adaptive synchronization in the presence of 
unknown parameter and bounded disturbances. It is 
shown by using Lyapunov-like analysis that the syn-



chronization error converges asymptotically to zero. 
The control law is motivated by Vargas and Hemer-
ly, (2008). 

 
Theorem 1: Consider the slave (1) and master (6) 
chaotic systems, which satisfy Assumptions 1-2, and 
the control law 
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( )Qmin4 γγ = , ( ) 21 135 γγγ += ,  and  

F
K is the Frobenius norm of K. 

(13) 

 
Then, the slave and master systems synchronize, 

i.e., .0)(lim =→∞ tet  

   
Proof: Consider the Lyapunov function candidate 
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where θθθ −= ˆ~
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 The time derivative of (14) results 
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On the other hand, by using (10), the closed-loop 

synchronization error can be written as 
    

rms udGGAee ++−+−= θ~)(&               (16) 

 
By evaluating (15) along the trajectories of (12) 

and (16), we obtain  
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 Rewriting (17), results 
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which, by using (10) , becomes 
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Since θθθ −= ˆ~
, it can be established that  

 

222

2

1ˆ
2

1~

2

1ˆ~ θθθθθ −+=                 (20) 

 
Thus by employing (11) and (20), (19) implies 
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 By using definition (13), (21) can be written as 
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Hence, 0≤V& as long as  
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Thus, since eα  and θα ~  are constants, by employ-

ing usual Lyapunov arguments (Slotine and Li, 

1991), we concluded that ( )te  and ( )tθ~  are uniform-

ly bounded. 
 
Additionally, the first inequality in (22) can be re-

written as 
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To show that the synchronization error converges 



asymptotically to zero, define a region Ω  in the 
synchronization error space by 

 

{ })exp( 01 tee γγ −≤=Ω             (24)   

 

Then, in case )exp( 01 te γγ −>  (or c
e Ω∈ ), we 

have 
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Further, since V is bounded from below and non-

increasing with time, we have  
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where ∞<= ∞∞→ VtVt )(lim . Notice that, based on 

(16), with the bounds on e , %θ ,d and ru , e& is also 

bounded. Thus, V&  is uniformly continuous. Hence, 
by applying the Barbalat’s Lemma (Slotine and Li, 
1991), we conclude that 0)(lim =∞→ tet  for all 

c
e Ω∈ . 

Once the synchronization error ( )te  has entered

Ω , it will remain in Ω  forever, due to (24) and (25). 
Consequently, we conclude that 0)(lim =∞→ tet  
holds in the large, i.e., whatever the initial value of 

( )te  (inside or outside Ω ). 

                                

 
 

4    Simulations 

 

In this section, we illustrate the application of the 
proposed synchronization method. Disturbances with 
practical meaning were considered in the simula-
tions.  

It was considered that [ ]5.05.021=mx  and 

[ ]2461 −−=sx . Hence, to obtain the synchro-

nization of the slave system (1) and the master sys-
tem (6), the control laws (10)-(11) and adaptation 
mechanism (12) were employed.  

The parameters used in the simulations for the hy-
perchaotic system were a = 0.9, b = 0.2, c = 1.5, d = 
0.2 and k = 0.017. The others design parameters were 

chosen as 1=k , ( ) 00ˆ =θ , 01.00 =λ , 11 =γ , 

001.02 =γ  05.0=θγ ,  and 

( )01.0 ,05.0 ,1.0 ,0001.0diagP = . 

 
We consider the presence of state/time-dependent 

disturbances of the form 
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The above disturbance can be interpreted as un-

modeled dynamics, which can be related with fluctu-
ations in the market caused by speculative behavior. 
It should be noted that these disturbances can often 
be dependent of the time and investment demand, in 
practice.  

Figures 1-9 show the performances obtained with 
the proposed scheme. From Figures 19-22, it should 
be highlighted the fast synchronization between the 
master and slave systems. It means that the proposed 
adaptive controller is robust and can achieve quick 
synchronization, even in the presence of several 
classes of disturbances. 

 
 

 
Figure 1. Performance for the synchronization of ( )txs1 .  

 

Figure 2. Performance for the synchronization of ( )txs2 . 

 

Figure 3. Performance for the synchronization of ( )txs3 . 



 

Figure 4. Performance for the synchronization of ( )txs4 . 

 

Figure 5. Synchronization error  ( ( ) ( )txtx ms 11 − ).  

 

Figure 6. Synchronization error  ( ( ) ( )txtx ms 22 − ).  

 
Figure 7. Synchronization error  ( ( ) ( )txtx ms 33 − ). 

 

 
Figure 8. Synchronization error  ( ( ) ( )txtx ms 44 − ). 

 

 
Figure 9. Norm of the estimated parameters θ̂ . 

 
 

5   Conclusions 

In this paper, we have proposed an adaptive con-
troller for synchronization of hyperchaotic finance 
systems, which can be affected by uncertainties, such 
as unknown system parameters and time-dependent 
or/and state-dependent disturbances. Based on Lya-
punov-like analysis, an adaptive control system was 
proposed to ensure the asymptotic convergence of 
the residual synchronization error to zero, even in the 
presence of the aforementioned uncertainties.  Simu-
lation results were presented to illustrate the theoreti-
cal results and the application of the proposed 
scheme. 
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