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Abstract— In this paper we present preliminary results towards the construction of a system capable of
executing image understanding from multiple viewpoints from the standpoint of qualitative spatial reasoning
and feature matching.
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Resumo— Neste artigo apresenta-se resultados preliminares sobre o desenvolvimento de um sistema capaz de
executar interpretacao de imagens provenientes de multiplos pontos de vista utilizando conceitos de raciocinio
espacial qualitativo e feature matching.
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1 Introduction

The modern research on scene interpretation is
based on the development of probabilistic meth-
ods motivated by the need to deal with sensor
noisy and image uncertainty (Lavee et al., 2009).
Probabilistic methods, however, are propositional,
imposing restrictions in their capability to rep-
resent general domain knowledge and their ap-
plicability on problems containing a possibly un-
bounded number of objects. Logic-based image
interpretation, on the other hand, tackles exactly
the problem of the effective representation of gen-
eral facts about the domain, as well as the gen-
eralisation of these facts to problems with infi-
nite variables (Santos, 2010). Thus, research on
logic-based image interpretation does not preclude
the use of probabilistic methods, but complements
them by making explicit the knowledge content of
a domain.

The first framework for a logic-based scene in-
terpretation system was proposed in (Reiter and
Mackworth, 1989) where three sets of axioms were
defined to constrain the number of possible inter-
pretations of the scenes observed. Therefore, the
scene interpretation process is reduced to a con-
straint satisfaction problem. The SIGMA system
(Matsuyama and Hwang, 1990) successfully de-
ploys the ideas proposed by Reiter and Mackworth
on the field of aerial image interpretation. Some
properties of the formalism used by the SIGMA
system were further developed in (Schroeder and
Neumann, 1996) and recently revisited and incor-
porated into a description logic setting (Neumann
and Möller, 2007).

In this context, our contributions follows the
ideas proposed in (Shanahan, 1996), where a log-
ical formalism is developed to rigorously define
the information obtained from a robot’s sensors
in terms of symbols hypothesising the existence,

location and shape of the observed objects. In
previous works (Santos and Shanahan, 2002; San-
tos, 2007; dos Santos et al., 2009), we have devel-
oped a theory aimed at the automatic scene under-
standing from a robot’s viewpoint. In particular,
(Santos, 2007) presents a formalism capable to in-
terpret events such as approaching, receding, or co-
alescing from pairs of subsequent images obtained
by a mobile robot’s stereopair. In order to further
interpret these image-related events, we developed
an abductive procedure for hypothesising on the
possible changes that might have occurred with
the domain objects that could explain the image
events.

In another work (dos Santos et al., 2009),
we developed a framework capable of interpreting
events based on an arbitrary long image sequence.
In this case, events such as the rotation of an ob-
ject around a reference point; one object follow-
ing another; and, one object trespassing another
were formally defined within a dynamic logic and
further used in a scene interpretation procedure
involving perceptually indistinguishable objects.
This system, however, could not handle uncer-
tainty in the scenes. In (Fenelon et al., 2010; San-
tos, Hummel, Fenelon and Cozman, 2010) we de-
veloped a spatial reasoning system in probabilistic
logics that was applied on the task of interpreting
images from traffic scenes from the viewpoint of
a camera at the driver’s position (Souza and San-
tos, 2011). Analogously, we applied a probabilistic
logic system to induce general facts from complex
videos obtained by a number of surveillance cam-
eras in an airport apron (Dubba et al., 2011).

The development of cognitive vision systems
for a mobile robot was also considered in our pre-
vious work. Based on recent psychological find-
ings (summarised in (Dee and Santos, 2011)), we
formalised the perception of shadows in terms of a
qualitative spatial theory and used in to interpret



the robot’s environment (Santos et al., 2009; San-
tos, Dee and Fenelon, 2010; Santos et al., 2011).

In all of these works, however, the scenes were
observed from the viewpoint of a single robot, that
has only its own knowledge base available for the
scene interpretation process. This paper presents
the initial steps towards extending our previous
logic-based image interpretation systems towards
the interpretation of scenes as observed by mul-
tiple, distinct, viewpoints. To this end, the next
section presents some ideas on extending current
qualitative spatial reasoning systems towards 3D
formalisms capable of representing the relative po-
sition of multiple viewpoints. Section 3 presents
preliminary results on extending feature matching
algorithms for handling scenes observed from ex-
treme viewpoints. Sections 4 and 5 present some
discussions on the results described, concluding
this paper.

2 Qualitative Spatial Reasoning about
Viewpoints

In this paper a viewpoint (represented by lower-
case Greek letters) is a unary vector in R3, whose
origin represents the viewpoint location and its
direction represents the direction of the robot’s
front. The direction is basically given by the angle
of the robot’s front with respect to the magnetic
Earth’s North, as given by the robot’s compass
and inertial measurement unit (IMU).

2.1 Viewpoint-relative position

The first step in our characterisation of a domain
with multiple viewpoints is to define the means
to specify the relative position of objects with re-
spect to a viewpoint (including the relative po-
sition of one viewpoint with respect to another).
For that we define an egocentric 3D qualitative
reference system that recalls the idea of Celestial
Sphere, as shown in Fig. 1. Whereas the view-
point is the origin of a sphere that represents a
discretisation of the space around it into altitude
and longitude lines (dashed circles in Fig. 1). In a
nutshell the space around the viewpoint ν is dis-
cretised into the altitude-longitude categories at,
near, far, upper, lower, below and under. It is
worth pointing out that these categories are inde-
pendent of the viewpoint direction, i.e., the nor-
mal of the top-half sphere is always pointing to-
wards the sky, and the limit between upper and
lower are always parallel to the horizontal line.
The extent of each of these spatial concepts de-
pends on the application domain (which may in-
clude priorities on the tasks to be accomplished,
the remaining battery charge and the robot’s ca-
pabilities).

Formally, the categories at, near, far, upper,
lower, below and under are defined imposing ap-

propriate thresholds on the distances from the
viewpoint at the origin of the sphere. Intuitively,
at represents the viewpoint’s local neighbourhood,
which in the case of a ground robot can be defined
as the smallest sphere enclosing its occupancy re-
gion, and in the case of the quadrotor, it can be
defined as a safety distance that could be used to
avoid collisions between other agents; near repre-
sents a region of space that can be reached in a
few minutes by the robot; the intuition of far is
analogous. The altitude categories upper, lower,
below and under are fixed in length and represent
the “near” and “far” portions of space around a
viewpoint on the altitude dimension. It is worth
pointing out that, on a complete planar field, the
personal sphere related to an any-terrain robot
will be in fact a half sphere (only the upper half
of Fig. 1).

Taking into consideration the viewpoint’s di-
rection, the space around ν can also be dis-
cretised into the relative positions: left, right,
front, back, leftfront, rightfront, leftback and
rightback using a version of the 8-Star Calculus
(Renz and Mitra, 2004) as shown in Fig. 2. Com-
bining the altitude-longitude categories with the
relative positions we have a very rich qualitative
discretisation of the space around a viewpoint.
Fig. 3 shows a cut at the equator of the per-
sonal sphere making explicit this discretisation,
whereby we use the following abbreviation f , b,
r, l, lf , lb, rf , rb representing respectively front,
back, right, left, leftfront, leftback, rightfront
and rightback.

In this work the relative positions and the
altitude-longitude categories described above are
binary relations between viewpoints and are de-
fined according to the Euclidean distances be-
tween the robots (whose 3D locations are given
by the robots’ GPS) and the directions of the
robots’ gaze (as given by the robot’s IMU). This
set of relations can be understood as a 3D ver-
sion of the Ternary Point Configuration Calculus
(Moratz and Ragni, 2008), whereby the origin is
a viewpoint and the relatum is given by the direc-
tion of the robot’s gaze with respect to its compass
(i.e. it is a point at the infinity). A formal defini-
tion of the relations presented above is outside of
the scope of this paper and is presented elsewhere
(Santos, 2013).

The purpose of defining this discretisation of
the local space around a viewpoint is two fold:
first, in some situations in field robotics applica-
tions the exact position of the robots is sometimes
irrelevant: what is important is to keep the robot
in a determinate region of space with respect to
a natural reference point. Second, a key issue in
a mixed initiative system is the interaction with
humans. In particular, search and rescue situa-
tions usually include human volunteers who are
not acquainted with robotics methods and math-



ematical functions, in general. Therefore the use
of (a portion of) natural language to describe the
actions and perceptions of both robotic and hu-
man agents is an essential feature.
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Figure 1: The personal sphere wrt viewpoint ν.
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Figure 2: relative positions from a viewpoint.
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Figure 3: Qualitative discretisation at the equator
of the personal sphere.

The formal characterisation of relative posi-
tion between viewpoints presented above comes
alongside to the development of new feature
matching algorithms capable of finding a match
between images seem from extreme viewpoints,
such as from a global viewpoint (picked out by
a quadrotor, for instance) and a ground robot ob-
serving the same scene. Preliminary results on
the development of feature matching algorithms
of this nature are described in the next section.

3 Understanding Multiple Viewpoints

One important goal of this work is the combina-
tion of the knowledge obtained from multiple (dis-
tinct) viewpoints. Starting from distinct view-
points regarding the same scene, the task is to
identify common features, specially in poor condi-
tions as partial occluded objects. In Figures 4(a)
and 4(b) it is possible to see that both images
refer to the same environment, although from dif-
ferent viewpoints. Standard feature-matching al-
gorithms fail in this case due to the high variation
in these viewpoints. It is also important to notice
that the monitor screen is partially hidden in fig-
ure 4(a), so it leads to difficulties in the matching
process.

(a) Viewpoint one.

(b) Viewpoint two

Figure 4: Snapshots from distinct viewpoints of
the same scene.

This work proposes a new approach to per-
form feature matching. In the method developed
here, first of all, it is necessary to extract local
descriptors by a common feature extractor like
SURF (Bay et al., 2008) (Figs. 4(a) and 5(b)).
Then, before performing feature matching against
each keypoint, as usually done, our method clus-
ters the descriptors. In order to improve the
results, the dimension was increased considering
also the spatial position (x, y) and color (r, g, b) of
the descriptors. The clusters thus generated ap-
plying these ideas on the images in Figures 4(a)
and 4(b) are shown in Figures 5(c) and 5(d), re-
spectively.

Next, for each element in the source cluster
the method performs a search in the target cluster.
If the distance between descriptors of the source
and target clusters is below a defined threshold,
the pair is considered as a match. The distance
from clusters is calculated considering the rela-
tion between the number of individual element



(a) Local descriptors from
viewpoint 1

(b) Local descriptors from
viewpoint 2

(c) Viewpoint one. (d) Viewpoint two

Figure 5: Clusters from descriptors.

matches and the average distance between them.
This process takes in account both directions, it
means, cluster A in source image is considered
similar to cluster B in target image, if and only
if both the distances from A to B and B to A
are the smallest, otherwise it is discarded. Figure
6 shows the matched regions with respect to the
input images on Figure 4.

Figure 6: Most similar regions according to clus-
ters from figs. 5(c) 5(d).

4 Discussion

In the results obtained it is possible to observe
that the monitor screen was roughly matched in
both images. Although, it worked as expected,
i.e., found similarities between the same object
from different viewpoints. When considering only
individual matches, we realised that the points
matched did not work properly as most of the
pairs matched happened between distinct parts of
the object on one viewpoint with respect to the
same object seen on another. This effect was due
to overweighted neighbourhood around each de-
scriptor.

An extension of this approach considering
global information, or even the spatial relations
between local descriptors inside a cluster, could
improve the method and produce more reliable
results.

5 Conclusion

This paper described ongoing research on extend-
ing the existing spatial reasoning systems towards
the explicit consideration of multiple viewpoints
of a scene within a single (combined) formalism.
We also presented preliminary results on the de-
velopment of a pattern matching algorithm capa-
ble of identifying objects on scenes observed from
distinct (extreme) viewpoints.
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