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Abstract— In this paper a procedure for closed-loop evaluation and PI controller redesign using a relay-based
experiment is applied to a laboratory-scale thermal process. This procedure was originally proposed in (Acioli
Jr. and Barros, 2011). The aim of the procedure is to evaluate the actual closed-loop using classical robustness
measures and, if necessary, redesign the PI controller to achieve a closed-loop with classical robustness measures
around the desired specifications.
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Resumo— Neste trabalho, um procedimento para avaliação e reprojeto de controladores PI em malha fechada
utilizando experimento baseado no relé é aplicado em um processo térmico de escala laboratorial. Esse proce-
dimento foi originalmente proposto em (Acioli Jr. and Barros, 2011). O objetivo do procedimento é avaliar a
malha fechada atual utilizando medidas clássicas de robustez e, se necessário, reprojetar o controlador PI para
obter um malha fechada com medidas clássicas de robustez próximas da especificação desejada.

Palavras-chave— Métodos em controle, Controle PID, Experimento do Relé, Avaliação de Desempenho,
Identificação de Sistemas.

1 Introduction

Process control aims at maintaining certain vari-
ables within their desirable operational limits and
usually is implemented through several control
levels. The first level is regulatory control, which
uses the PID control algorithm to provide stabil-
ity and fast response to load disturbances. At a
second control level, we have the Advanced Pro-
cess Control (APC) systems. In this hierarchically
control structure, well tuned PID controllers are
prerequisites for successful APC implementation.

Despite the fact that many PI/PID tuning
methods have been proposed in literature, see
(O’Dwyer, 2006) for an extensive list of references,
many regulatory control loops are still found
poorly tuned (Skogestad, 2003). In this sense,
closed-loop performance evaluation and controller
redesign are necessary.

One approach to evaluate the closed-loop per-
formance is estimate gain and phase margins
(GPM). GPM are classical measures of closed-loop
robustness in frequency-domain and are often used
as specifications to design PID controllers. Sev-
eral GPM tuning methods have been proposed in
literature. Some are based on graphical methods
which are not suitable for PID autotuning whilst
others are based on simple models using approx-
imation which do not guarantee that the specifi-
cation will be achieved, as in (Ho et al., 1995).
Model-based tuning techniques that rely only on
open-loop simple dynamics may have poor per-
formance when the process is too complex. There
are some iterative procedures as the one presented

in (de Arruda and Barros, 2003), which uses an
ad hoc iterative algorithm. Other techniques are
based on numerical methods as the one presented
in (Karimi et al., 2003).

Another way to perform PID controller re-
design is a model-based approach. In this, a pro-
cess model is estimated from a closed-loop iden-
tification technique and the PID controller is de-
signed using the model. For PID controller design
purpose, the model that receives most attention is
first-order plus time delay (FOPTD) model. The
IMC-PID formula for PID controller design pro-
posed in (Riva et al., 1986) is a model-based ap-
proach that uses FOPTD model. It is attractive
to industrial users because it has only one tun-
ing parameter, namely the IMC filter τcl, which is
related to the closed-loop time constant.

In (Ho et al., 2001), the IMC-PID design
is examined from the frequency-domain point of
view. Analytical equations for GPM are derived
for the IMC-PID design. Recently, the authors
proposed a procedure for closed-loop evaluation
and PI controller redesign based on the knowl-
edge of GPM, crossover and critical frequencies,
and a FOPTD process model (Acioli Jr. and Bar-
ros, 2011). The GPM with corresponding critical
and crossover frequencies are estimated using a
closed-loop relay-based experiment. The FOPTD
process model is estimated using the relay exper-
iment data. The identification technique solves a
time least-squares problem subject to a constraint
in the crossover frequency.

In this paper, the procedure proposed in
(Acioli Jr. and Barros, 2011) is revised. The



procedure is applied to a laboratory-scale thermal
process. The paper is organized as follows. In Sec-
tion 2, the problem statement is presented. The
closed-loop evaluation and FOPTD identification
using a relay-based experiment is presented in Sec-
tion 3. In Section 4, the PI controller redesign
method is described. The experimental result is
discussed in Section 5 followed by conclusion in
Section 6.

2 The Problem Statement

Consider the closed-loop shown in Fig.1. The pro-
cess transfer function G (s) is represented by a
simple FOPTD model

G (s) =
Kp

τs+ 1
e−ls, (1)

while the PI controller is C (s) = Kc(1 +
1

Tis
).

Figure 1: The Closed-Loop

Assume that C (s) was defined using IMC-PI
design settings for setpoints presented in (Riva
et al., 1986). The IMC-PI formula is given by

Kc =
τ

Kp (τcl + l)
, (2)

Ti = τ, (3)

where, Kp, τ and l are the FOPTD model pa-
rameters, and τcl is the IMC-PI tuning specifica-
tion parameter. The loop gain transfer function
(L(s) = G(s)C(s)) for the IMC-PI design is given
by

Limc−pi (s) =
e−ls

s (τcl + l)
. (4)

By definition, the gain margin (Am) and
phase Margin (φm) of a closed-loop is

Am =
1

|L(jωc)| and φm = π + ∠L(jωg),

where ωc and ωg, critical and crossover frequen-
cies respectively, are obtained from ∠L(jωc) = −π
and |L(jωg)| = 1.

The problem statement is: Given a closed-
loop system, evaluate robustness and performance
through gain and phase margins and estimate
a FOPTD process model using relay experiment
data jointly with the crossover frequency as con-
straint. If necessary, redesign the controller to
match the desired specifications.

3 Closed-Loop Evaluation and FOPTD
Identification

The closed-loop is evaluated from the GPM point
of view. These margins are estimated experimen-
tally using a relay-based experiment performed

in the closed-loop system. Another information
estimated using the relay experiment data is a
FOPTD model. These information are used to
redesign the PI controller.

3.1 Gain and Phase Margins Estimation

The relay-based experiment used here is a com-
bined of two relay experiments, namely here as
Gain Margin and Phase Margin experiments. In
this section, the relay experiments are revised and
the estimation of GPM with corresponding ωc and
ωg frequencies are shown.

3.1.1 Gain Margin Experiment

The standard relay test presented in (Åström and
Hägglund, 1995) is used to estimate the critical
point and frequency. It can be shown (see (Schei,
1994)) that if this relay test is applied to a closed-

loop T (s) = Y (s)
Yr(s)

= L(s)
1+L(s) , the limit cycle occurs

at the critical frequency of the L (s), i.e L (jωc) =
G (jωc)C (jωc).

The estimation of critical frequency ω̂c is
obtained from the frequency of the limit cycle.
G (jω̂c) is estimated computing the DFT of one
period of the process input u and output y when
the relay oscillation is present and steady. With
the knowledge of C (s), we can compute C (jω̂c).
The closed-loop gain margin is computed as

Âm =
1

|L(jω̂c)| =
1

|G (jω̂c)C (jω̂c)| . (5)

3.1.2 Phase Margin Experiment

The relay feedback structure applied for crossover
frequency point estimation of the loop transfer
function is presented in Fig. 2.

Figure 2: Phase Margin Experiment.

If this relay structure is applied to a closed-
loop T (s), the limit cycle occurs at the crossover
frequency of L (s), i.e |L (jω̂g)| ≈ 1 (Schei, 1994).

The setpoint yr (t) is the excitation applied to
T (s). ω̂g, G (jω̂g) and C (jω̂g) are estimated in a
similar way to the Gain Margin Experiment. The
closed-loop phase margin is computed as

φ̂m = π + ∠L(jω̂g) = π + ∠ (G (jω̂g)C (jω̂g)) .



3.2 Closed-Loop FOPTD Identification using
frequency-domain constraint

A FOPTD model is estimated using the relay ex-
periment data described in previous section. The
identification technique solves a time least-squares
optimization subject to a equality frequency-
domain constraint. The constraint is the process
frequency point in crossover frequency. The iden-
tification technique was presented in (Acioli Jr.
et al., 2006) and is revised here.

3.2.1 Least-Squares Optimization using
Equality Constraint

Lemma 1 Assume the parameters to be opti-
mized θ̂, that data is grouped in a vector from
yielding matrices Y and Φ, and the constraints
are expressed in matrices M and γ. The least-
squares optimization problem with constraints is
defined as

min
θ̂

J =
(
Y − Φθ̂

)T (
Y − Φθ̂

)
(6)

subject to

Mθ̂ = γ. (7)

By defining E = 2ΦTΦ and F = 2ΦTY , the solu-
tion is

λT =
[
ME−1MT

]−1 [
γ −ME−1F

]
,

θ̂ = [E]
−1

(F +MTλT ).

Proof: In order to find the solution, one uses
the equivalent optimization problem in relation to
θ̂ and λ (vector of Lagrange Multipliers). The
equivalent problem is given by

min
θ̂,λ

J =
(
Y − Φθ̂

)T (
Y − Φθ̂

)
+ λ(γ −Mθ̂).

For more details see (Wang et al., 2005). 2

3.2.2 Identification of the FOPTD model

The identification algorithm uses the following ap-
proximation for the FOPTD model

G (s) =
Kp (1− ls)

τs+ 1
, (8)

Lemma 2 From Eq. 8 we can define the re-
gression vector with the available relay experiment
data being discrete-time

y (t) = φ (t) θ, (9)

where

φ (t) =
[
− ∫ t

0
y (υ) dυ

∫ t

0
u (υ) dυ u (t)

]T
,

θ =
[
α = 1

τ β = Kpα δ = βl
]
. (10)

Proof: Details see (Acioli Jr. et al., 2006). 2

Lemma 3 From Eq. 8, the equality frequency-
domain constraint is defined through the following
regression vector which is obtained using the linear
form in Eq. 7

ẑ = xT (ω̂g) θ̂,

with, ẑ = jω̂gĜ (jω̂g) and
xT (jω̂g) =

[
−Ĝ (jω̂g) 1 −jω̂g

]
.

Proof: Details see (Acioli Jr. et al., 2006). 2

Lemma 2 and 3 defines the regression vec-
tors for FOPTD model identification using the
least-squares optimization problem defined in
lemma 1. The final estimate obtained is{
τ̂ = 1

α̂ , K̂p = β̂
α̂ , l̂ = δ̂

β̂

}
.

4 The PI Controller Redesign Method

In this section, the PI controller redesign method
is described. It is based on estimated gain
and phase margins (GPM), and FOPTD model.
Firstly, the IMC-PI design is examined from the
frequency-domain point of view. Equations for
typical specifications such as GPM are derived.

4.1 Frequency-Domain Characterization of the
IMC-PI Design

Consider the basic definitions of the GPM, the
following set of equations is obtained:

∠G (jωc)C (jωc) = −π , (11)

|G (jωc)C (jωc)| = 1

Adm
, (12)

|G (jωg)C (jωg)| = 1 , (13)

∠G (jωg)C (jωg) + π = φdm , (14)

where Adm and φdm are desired GPM.

Lemma 4 Using the same procedure presented in
(Ho et al., 2001) analytical relations between τcl =
βl, Adm, φdm and ωg are defined:

ωgl =
1

(1 + β)
, (15)

φdm =
π

2
− 1

(1 + β)
, (16)

Adm =
π

2
(1 + β) . (17)

Proof: Consider the PI controller designed using
IMC-PI formula (Eqs. 2 and 3) it is given by

Cimc (s) =
τ

Kp (τcl + l)
(1 +

1

τs
), (18)

substituting Eqs. 1 and 18 into Eqs. 11-14 gives

φdm =
π

2
− ωgl, (19)

ωg =
1

τcl + l
, (20)

Adm = ωc (τcl + l) , (21)

0 =
π

2
− ωcl. (22)



Solving Eq. 22 gives a constant ωcl =
π
2 . Con-

sider τcl = βl into Eqs. 19-21 we obtain the re-
lations defined in Lemma 4. For more details see
(Acioli Jr. and Barros, 2011). 2

From Eqs. 16-17, gain and phase margins for
the IMC-PI design can be related

φdm =
π

2

(
1− 1

Adm

)
. (23)

Equation 23 gives the achievable margins and
Fig. 3 shows the curve for the above relationship.
For the IMC-PI design, only GPM combinations
along the curve can be obtained. Using Eq. 17
the parameter β can be related to Adm

β =
2Adm

π
− 1. (24)

2 2.5 3 3.5 4 4.5 5 5.5 6
45

50

55

60

65

70

75

80

Gain Margin Adm

Ph
as

e 
M

ar
gi

n 
(d

eg
)

Figure 3: GPM for IMC-PI design

4.2 Relay-Based Gain and Phase Margins PI
Controller Redesign

In order to achieve gain or phase margin specifi-
cation, a PI controller redesign method was pro-
posed in (de Arruda and Barros, 2003). This
method are revised here.

Consider the closed-loop system (Fig. 1) and
Adm, φdm specifications. To achieve these specifi-
cations, the redesigned controller must satisfy the
Eqs. 11-14. In (de Arruda and Barros, 2003), an
iterative procedure was proposed to PI controller
tuning based on gain and phase margins. Here,
the redesign methods for each one specification
are used separately.

Controller Redesign for Desired Gain
Margin: The controller gain can be calculated
for achieving the gain margin Adm using Eq. 12.
That is, with the current estimated gain mar-
gin, Âm, and the estimated critical frequency, ω̂c,
one can compute the controller proportional gain,

Kgm
c , from Kgm

c = KcÂm

Adm
. The redesigned con-

troller for a desired gain margin is

Cgm (s) = Kgm
c

(
1 +

1

Tis

)
. (25)

Controller Redesign for Desired Phase
Margin: The controller parameters can be cal-
culated for achieving φdm using Eq. 14. This re-
design method is separated into two parts:

1. Determine T pm
i such that Eq. 14 is satisfied,

T pm
i =

tan
[
−π + φdm − φ̂m + tan−1 (ω̂gTi)

]

ωk
g

.

2. Now, update the controller proportional gain
Kpm

c such that the loop gain at the frequency
ω̂g is equal to one,

Kpm
c = Kc

√
(1/Ti)

2
+ ω̂2

g√
(1/T pm

i )
2
+ ω̂2

g

. (26)

The redesigned controller for a desired phase
margin is given by

Cpm = Kpm
c

(
1 +

1

T pm
i s

)
. (27)

4.3 The PI Controller Redesign Procedure

The proposed PI controller redesign procedure is
described here. The following steps are defined.

1. Consider a initial closed-loop T (s). A relay-
based experiment is performed in T (s);

2. Using the relay data, T (s) are evaluated from

classical robustness measures (Âm, ω̂c, φ̂m,
ω̂g) point of view. Other information esti-
mated is a FOPTD model (see section 3);

3. If the closed-loop evaluation is not satisfac-
tory, a point of the curve in Fig. 3 is speci-
fied. A GPM pair is also specified (Âdm and

φ̂dm). From Âdm the parameter β is specified
using Eq. 24;

4. Using the specifications (Adm, φdm and β),
three new PI controller is designed. Cimc(s)
from Eqs. 2-3, Cgm(s) from Eq. 25 and
Cpm(s) from Eq. 27;

5. A criterion is applied to define the redesigned
controller (Cred(s)) from Cimc(s), Cgm(s)
and Cpm(s). It is defined as

• If Âm > Adm the controller proportional
gain (Kc) should be increased, else in-
stead;

• If φ̂m > φ̂dm the controller integral time
(Ti) should be decreased, else instead;

• Observing the first assumption, Kc is
chosen from Cimc(s) and Cgm(s) as the
most conservative one.



• Observing the second assumption, Ti is
chosen from Cimc(s) and Cpm(s) as the
most conservative one.

6. The new closed-loop system is evaluated. In
the case where the closed-loop evaluation is
satisfactory the procedure ends. Otherwise,
return to step 3 and the procedure is repeated
from this new closed-loop system.

4.4 Simulation Example

Consider the process Gex(s) = (2s+1)
(10s+1)(0.5s+1)e

−s

and the initial PI controller
Ciex(s) = 1.68

(
1 + 1

13.53s

)
.

The closed-loop are evaluated using a relay-
based experiment. The GPM are estimated
through the relay experiment data as Âm = 4.13
and φ̂m = 102.46◦. The critical and crossover
frequencies is estimated as ω̂c = 2.24 rad/s and
ω̂g = 0.13 rad/s. The estimated FOPTD model

is Ĝex(s) =
0.8719

7.356s+1e
−0.589s.

The desired gain margin specification is
Adm = 2.5. From Eq. 23-24 we obtain φdm = 54◦

and β = 0.5915. Using these specifications, new
controllers are computed. Their parameters are
shown in Table 1

Table 1: New Controller Parameters
Cimc(s) Cgm(s) Cpm(s)

Kc 9.0065 2.7757 0.3832
Ti 7.3556 13.53 1.5816

Using the redesign procedure (step 5), the re-
designed controller is given by

Cred(s) = 2.7757

(
1 +

1

7.3556s

)
. (28)

The new closed-loop is evaluated. The GPM
and, critical and crossover frequencies are esti-
mated: Âm = 2.54, φ̂m = 89◦, ω̂c = 2.1 rad/s
and ω̂g = 0.26 rad/s.

The redesigned closed-loop has converged to-
wards the desired specifications. The closed-loop
performance has been improved (see Fig. 4).
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Figure 4: Closed-Loop Step Response

5 Experimental Results

In this section the procedure for closed-loop eval-
uation and PI controller redesign using a relay-
based experiment is applied to a laboratory-scale
thermal process.

5.1 Experimental Setup description

The experimental setup is a laboratory-scale ther-
moelectric system. This consists of two peltier
modules, two LM35 temperature sensors, a metal
plate, two heat exchangers, two fans, a PLC (Pro-
grammable Logic Controller) and a PC with su-
pervisory system. The peltier modules act as
heat pumpers on two sections of a flat metal
plate heat load. The heat exchangers and fans
are used to transfer heat from the opposite faces
of each peltier module. The process works as
a coupled two-input two-output process. Power
is applied using PWM actuators while the tem-
peratures are measured using LM35 sensors. In
(Barros et al., 2008) the experimental setup is de-
scribed in details.

The dynamic behavior of a thermoelectric sys-
tem results in a complex model and nonlinear. For
control purposes, a model reduction can be made.

In this paper, the thermoelectric system was
used as a single-input single-output (SISO) pro-
cess with input 2 (u2) as manipulated variable and
output 2 (y2) as controlled variable.

5.2 Results

Consider the initial closed-loop with Gexp(s)
(SISO thermoelectric process) and initial con-
troller Cexpinicial(s) = 0.234

(
1 + 1

2.243s

)
, where

the controller integral time (2.243) is given in min-
utes.

The closed-loop are evaluated using a relay-
based experiment shown in Fig. 5. The GPM
are estimated through the relay experiment data
as Âm = 2.4 and φ̂m = 34.2◦. The critical and
crossover frequencies is estimated as ω̂c = 0.09
rad/s and ω̂g = 0.045 rad/s. The estimated

FOPTD model is Ĝexp(s) =
0.636

31.93s+1e
−279s.
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Figure 5: Relay-Based Experiment

For the controller redesign, the desired specifi-
cations are Adm = 2.5, φdm = 54◦ and β = 0.591.



The parameters of the new controllers are shown
in Table 2.

Table 2: New Controller Parameters
Cimc(s) Cgm(s) Cpm(s)

Kc 0.113 0.225 0.973
Ti (min) 0.532 2.83 10.77

Using the redesign procedure (step 5), the re-
designed controller is

Cred(s) = 0.225

(
1 +

1

10.77s

)
. (29)

The new closed-loop is evaluated. The GPM
and, critical and crossover frequencies are esti-
mated: Âm = 4.6, φ̂m = 52.44◦, ω̂c = 0.12 rad/s
and ω̂g = 0.019 rad/s. The result is around to
the specifications and the redesigned become more
stable as specified (see Fig. 6).
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Figure 6: Closed-Loop Step Response - Experi-
mental

6 Conclusion

In this paper, an experimental result of applying
the procedure for closed-loop evaluation and PI
controller redesign proposed in (Acioli Jr. and
Barros, 2011) was presented. The closed-loop sys-
tem is evaluated using a relay-based experiment
to estimate classical robustness measures and a
FOPTD process model. Using these information,
a PI controller redesign is performed to achieve a
new closed-loop system with gain and phase mar-
gins around to desired specifications.
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