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Abstract— This paper proposes the mixture of partial least square regression models (Mix-PLS) for prediction
polymerization batch process. The Mix-PLS is the solution of the mixture of experts framework using the
partial least squares (PLS) algorithm together with the expectation-maximization (EM) algorithm. The proposed
method, is less prone to overfitting with respect to the number of mixture models, when compared to the standard
least squares solution of mixture of experts (Mix-LS). The Mix-PLS was successfully applied to predict the
viscosity and acidity (two quality measures) in a polymerization batch process. The results were compared with
four other regression algorithms (Mix-LS, PLS, MLP, and LS-SVR). The proposed method exhibits the best
prediction performance.
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1 Introduction

Today, soft sensors have many applications in indus-
try (e.g. fault detection, process monitoring, prediction
of critical variables, and control) (Fortuna et al., 2006;
Kadlec et al., 2009). The major number of soft sen-
sors applications consists on the prediction of critical or
hard-to-measure1 variables, where easy-to-measure vari-
ables (i.e. physical sensors) are used in a model to pre-
dict the hard-to-measure variable. The most popular
data-driven models used in soft sensors applications are
the multiple linear regression, with least squares (LS) or
partial least squares (PLS) estimation methods, neural
networks based models (NN), and support vector regres-
sion (SVR).

In almost all soft sensor applications, a single model
is tuned using all available training samples, without dis-
tinguishing the operating modes of the process during
the training phase. However, the existence of multiple
operating modes in a process is an inherent character-
istic of most industrial applications. Sometimes multi-
ple operating modes result from external disturbances,
as for example a change in feedstock or product grade
or even changes such as the diurnal load variation of a
power plant or the summer-winter operation of a refin-
ery (Matzopoulos, 2010; Wang et al., 2012). In these
situations, it would be beneficial for the prediction ac-
curacy and reasonably, to consistently train a model
for each operating mode of the process (Yu, 2012), or

1The term hard-to-measure variable, employed here, refers to
a variable which can not be measured by physical sensors, due the
unavailability of sensor. Usually, this kind of variable is measured
by laboratory analysis.

train a model for each set of correlated operating modes
(Facco et al., 2009); And during online operation, when
a new sample is made available, the model which is the
most adequate for this new sample is identified and then
used to make the prediction. The identification of which
model will be used is a key issue in the development
(Facco et al., 2009; Camacho and Picó, 2006; Lu and
Gao, 2005), which can be done using expert knowledge
(Facco et al., 2009) or using automatic tools, as finite
mixture of Gaussian models (FMGM) (Yu, 2012).

In this work, it is proposed the use of a mixture of
partial least squares (PLS) experts (Mix-PLS) for deal-
ing with online prediction of critical variables in pro-
cesses with multiple operating modes. The Mix-PLS
will be derived from the framework of mixture of ex-
perts (ME) (Jacobs et al., 1991). The ME models input-
output observations by assuming that they have been
produced by a set of different random sources (the ran-
dom sources can be thought as operating modes). Each
random source in the ME framework is modeled by an
expert, and during the online operation the decision
about which experts should be used is modeled by a
gating function. Figure 1 illustrates this approach.

The learning of parameters in ME can be done us-
ing the maximum likelihood method and the expec-
tation and maximization (EM) algorithm (Dempster
et al., 1977). By modeling the experts by a Gaussian
distribution and the gates functions as a softmax func-
tion, the ME is then reduced to a mixture of linear re-
gression experts (MLRE) (Jordan, 1994). The standard
solution of MLRE requires the use of the least squares
(LS) estimator to find the model and gate parameters,
this solution will be refereed as Mix-LS. However, the
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Figure 1: Mixture of linear regression models with P

experts, where x(i) is an input sample, υp(x(i),V) is the
output of gating function for model p and f(x(i),θp) is the

output of the linear model of expert p.

LS estimator cannot handle input collinearity, and the
LS estimator makes the MLRE more prone to overfit-
ting with respect to the number of experts used (Yuksel
et al., 2012).

In this work the parameters of each expert and for
each gating function are determined using the PLS al-
gorithm. The solution of the parameters using the PLS
algorithm overcomes the problem of collinearity of input
data and also makes the Mix-PLS less prone to overfit-
ting with respect to the number of mixture models.

In the experimental part, the Mix-PLS is then ap-
plied in one batch process and compared with the state
of the art algorithms for regression that are used in state
of the art soft sensors methods: a single PLS model, a
single layer neural network (MLP) trained using the gra-
dient descent training algorithm, and least squares sup-
port vector regression (LS-SVR) with Gaussian kernel
(Suykens et al., 2002). The experimental results indi-
cate that the recursive Mix-PLS outperforms the other
methods. Moreover, the Mix-PLS has the advantage
of being more interpretable than the non linear models
with respect to the parameters.

The paper is organized as follows. Section 3 reviews
the PLS algorithm and its parameters selection. The
proposed Mix-PLS method is presented in Section 4.
Section 5 presents experimental results. Finally, Section
6 gives concluding remarks.

2 Notation

The notation used here is defined as follows, x(i) =
[x1(i), . . . , xD(i)]T and y(i) are the vector of input vari-
ables and the output target at instant i, X, with ele-
ments Xij = xj(i), and y, with elements yi,1 = y(i) are
the input matrix and output vector containing all the k

examples. Moreover, X = X1 × . . . × XD, and Y, de-
note the space of input variables values and the space of

output values, respectively, where X ⊂ R
D and Y ⊂ R.

A subscript k will be used to denote the value of the
corresponding variable after k samples.

3 Partial Least Squares

PLS regression is a method for finding the parame-
ters θ = [θ1, . . . , θD]T of a linear model of the form

f(x, θ) = θ0 +
∑D

j=1 θjxj from a given a set of input-
output samples Φ = {(x(i), y(i)); i = 1, . . . , k}. This
model is composed by a linear combination of the inputs
for regression. The objective of the design of the linear
combination is to maximize the covariance between the
input and output spaces. The PLS estimation method
is attractive because it works well on high dimensional
data, noisy data, and data with collinearity, which are
common characteristics in most industrial applications.

More specifically, PLS projects the information of
the data into a low dimensional space defined by a small
number of orthogonal latent vectors tm and um, with
T = (t1, . . . , tM ) ∈ R

k×M (with M ≤ D as the number
of latent variables) and U = (u1, . . . ,uM ) ∈ R

k×M :

X = TP
T +E =

M
∑

m=1

tmp
T
m +E, (1)

y = TBQ
T + F =

M
∑

m=1

umq
T
m + F, (2)

where P = (p1, . . . ,pM ) ∈ R
D×M and Q =

(q1, . . . ,qM ) ∈ R
1×M are the loading matrices, E

and F are the input and output data residuals, B =
diag(b1, . . . , bM ) is a diagonal matrix with the regres-
sion weights bm. Then, the estimated output ŷ, given
an input sample x, is given by:

ŷ = x
T
θ , (3)

where θ = P†BQT , and P† = (PPT )−1P is the
pseudo-inverse of P. The values of bm (m = 1, . . . ,M),
T, P, U, Q from the above problem can be computed
by using the classical Nonlinear Interative Partial Least
Squares (NIPALS) method (Wold, 1975).

3.1 Selecting the Number of Latent Variables

Let M be such that M ∈ M, for any possible/eligible
number of latent variables, M . The major concern re-
garding the PLS algorithm is to select the number of la-
tent variables M . Usually it is determined by a K-fold
cross-validation procedure applied on the training set.
In K-fold cross validation the training set is split ran-
domly into K subsets or folds, then the PLS is trained
using the samples from the (K − 1) folds and evaluated
in the remaining fold using any performance metric, usu-
ally the residual sum of squares (RSS); e.g. lower values
of RSS indicate better models. It is repeated for all folds
K, and with different values for the number of latent fac-
tors. The selected number of latent factors M is the one
that produced the lowest average cross-validation perfor-
mance metric among these K realizations. However, the
K-fold cross-validation procedure is very efficient as long



as k (the number of samples) is not too large, since it
needs to run the PLS algorithmK|M| times. A fast way
of selecting the number of latent variables is using infor-
mation criterion methods, like the Akaike Information
Criterion (AIC) (Akaike, 1974) or the Bayesian Informa-
tion Criterion (BIC) (Schwarz, 1978), which measure the
quality of a model in terms of its accuracy-complexity
trade-off (ACT). Using information criterion methods,
the PLS algorithm runs just |M| times.

4 Mixture of Partial Least Squares Regression

Experts

In this section, the formulas for the learning of the Mix-
PLS will be briefly discussed, due the limited number of
pages. For the learning, the parameters of the Mix-PLS
are tuned using a set of observations Φ.

4.1 Mixture of Experts

The ME approximates the true pdf p(y(i)|x(i)) with the
following superposition of individual pdfs:

p(y(i)|x(i),ϑ) =
P
∑

p=1

υp(x(i),V) p(y(i)|fp(x(i),θp),Ω), (4)

where P is the number of experts, ϑ = {V,E}, V and
E = {Θ,Ω} are defined as the sets of parameters of
the gates and model experts, respectively, Θ = {θp| p =
1, . . . , P}, υp(x(i),V) is the gating function of expert p,
and p(y(i)|fp(x(i), θp),Ω) is the pdf of expert model p,
with mean fp(x(i), θp) and additional pdf parameters
Ω. From (4), prediction equation of ME is obtained as
the following conditional mean of y:

F (x(i)) =

∫

y p(y|x(i),ϑ)dy =

P
∑

p=1

υp(x(i),V) fp(x(i),θp).

(5)

In the ME the log likelihood of (4), given a set of
observations Φ is given by (Jacobs et al., 1991):

ln p(y|X,ϑ) = ln

(

∑

Z

p(Z|X,V) p(y|X,Z,E)

)

= ln

(

k
∏

i=1

p(y(i)|x(i),ϑ)

)

,

= ln





k
∏

i=1

∑

z(i)

p(z(i)|x(i),V) p(y(i)|x(i), z(i),E)



 , (6)

where Z denotes a set of hidden variables Z =
{zp(i)| p = 1, . . . , P, i = 1, . . . , k}, and z(i) =
[z1(i), . . . , zP (i)]

T is the vector of hidden variables for
a sample i, where zp(i) ∈ {0, 1}, and for each sample i,
all variables zp(i) are zero, except for a single value of
zp(i) = 1, for some p. The hidden variable zp(i) indi-
cates which expert p was responsible for generating the
data point i.

The maximization of (6) is not straightforward
(Bishop, 2006; Jacobs et al., 1991). In order to maximize
(6) the Expectation-Maximization (EM) algorithm will
be employed. The EM algorithm is a general method

for finding the maximum-likelihood estimate of the pa-
rameters of an underlying distribution from a given
data set when the data has hidden variables (Dempster
et al., 1977; Bishop, 2006). The learning of the mixture
of experts by the EM algorithm is summarized in Table
1. During the Expectation step (E step) of the EM, the

current parameter values ϑ(old) are used to estimate the
posterior distribution of hidden variables:

p(Z|y,X,ϑ) =

k
∏

i=1

P
∏

p=1

(

p (y(i)|zp(i),x(i),E) p (zp(i)|x(i),V)
∑P

p=1 [p (zp(i)|x(i),V) p (y(i)|zp(i),x(i),E)]

)zp(i)

.

(7)

Then, in the Maximization step (M step), this pos-
terior distribution is used to find the new parameters

values ϑ
(new), which maximize the expectation of the

complete-data (output and hidden variables) log likeli-
hood:

Q(ϑ,ϑ(old)) = EZ[ln p(y,Z|X,ϑ)]

=
∑

Z

ln p(y,Z|X,ϑ) p(Z|y,X,ϑ
(old)). (8)

where the value of p(y,Z|X,ϑ), necessary to compute

Q(ϑ,ϑ(old)) is:

p(y,Z|X,ϑ) = p(y|X,Z,ϑ) p(Z|X,ϑ),

=

k
∏

i=1

P
∏

p=1

[ p (zp(i)|x(i),V) p (y(i)|zp(i),x(i),E) ]
zp(i) . (9)

The expectation of the complete-data log likelihod
(8) can be computed using (7) and (9), which gives:

Q(ϑ,ϑ(old)) =
∑

Z

ln p(y,Z|X,ϑ) p(Z|y,X,ϑ),

= Qg(V,ϑ
(old)) +Qe(E,ϑ

(old)), (10)

where Qg(V,ϑ(old)) is the contribution of gate for the
expectation of complete-data log likelihood, (Qg is a
simplified notation) :

Qg =

k
∑

i=1

P
∑

p=1

γ
(old)
p (i) ln p (zp(i) = 1|x(i),V) , (11)

and Qe(E ,ϑ
(old)) is the contribution of expert for the

expectation of complete-data log likelihood, (Qe is a sim-
plified notation) :

Qe =

k
∑

i=1

P
∑

p=1

γ
(old)
p (i) ln p (y(i)|zp(i) = 1,x(i),E) , (12)

where γ
(old)
p (i), defined as the responsibility of model

p, is the expectation of zp(i) with respect to its distri-
bution (7), and it accounts for the probability of model
p generating the data sample i:

γ
(old)
p (i) =

p
(

zp(i) = 1|x(i),V(old)
)

p
(

y(i)|zp(i) = 1,x(i),E(old)
)

∑P

l=1

[

p
(

zl(i) = 1|x(i),V(old)
)

p
(

y(i)|zl(i) = 1,x(i),E(old)
)] .

(13)



Table 1: EM Algorithm

1. Initialize ϑ to be equal to some initial ϑ(old);

2. Repeat 3) to 5) until the EM algorithm converges*;

3. E step:

a) Estimate the distribution p(Z|y,X,ϑ(old)) using (7);

4. M step:

a) Find the new parameters values ϑ(new), which maximize the expectation of the complete-data log likelihood Q(ϑ,ϑ(old)).

i. ϑ
(new) = argmaxϑ Q(ϑ,ϑ(old)) = argmaxϑ

(

∑

Z
ln p(y,Z|X,ϑ)p(Z|y,X,ϑ(old))

)

(Equation (14));

5. Set ϑ
(old) ← ϑ

(new);

6. Return ϑ
(new).

*The convergence of the EM algorithm can be verified by analyzing the convergence of the expectation Q(ϑ,ϑold). It is also possible
to set pre-specified maximum number of iterations.

In (10), Qg and Qe are the contributions of gate and
expert parameters for the expectation of complete-data
log likelihood. Then, the M step of the EM algorithm
can be performed, by separately maximizing the gate
and expert contributions, as follows:

ϑ
(new) = argmax

ϑ

Q(ϑ,ϑ(old)),

=

{

argmax
V

Qg(V,ϑ
(old)), argmax

E

Qe(E,ϑ
(old))

}

. (14)

Thus, the determination of the parameters for the
gates V and the experts E is independently performed
by the maximizations in (14). In the Mix-PLS, such
maximizations are done using the PLS algorithm, as de-
rived in Subsections 4.2 and 4.3 below.

4.2 Modeling the Experts With the PLS Algorithm

In this paper, it is assumed that each

pdf p (y(i)|zp(i) = 1,x(i),E) in Qe(E,ϑ
(old))

(10) is described by a Gaussian distribution
N (y(i)|fp(x(i), θp), ωp), where fp(x(i), θp), and ωp

are the mean and variance of the model of expert
p, respectively. The mean is modeled by a linear
model fp(x(i), θp) = x(i)Tθp. Specifically, the experts
parameters E = {Θ,Ω}, include the parameters of
Θ = {θp| p = 1, . . . , P}, and Ω = {ωp| p = 1, . . . , P}.

Thus, the contribution Qe(E,ϑ
(old)) of all experts to

the expectation of complete data log likelihood (10) can
be rewritten as:

Qe =

P
∑

p=1

k
∑

i=1

γ
(old)
p (i) lnN (y(i)|fp(x(i), θp), ωp), (15)

and from (13) the responsibility γ
(old)
p (i) is equal to:

γ
(old)
p (i) =

υ
(old)
p (i)N (y(i)|fp(x(i),θ

(old)
p ), ω

(old)
p )

∑P

l=1 υ
(old)
l (i)N (y(i)|fl(x(i),θ

(old)
l ), ω

(old)
l )

,

(16)

where υ
(old)
p (i) = p

(

zp(i) = 1|x(i),V(old)
)

is the prob-

ability of model p generating sample i, which will be
determined in Section 4.3.

Then, Qe(E ,ϑ
(old)) is maximized with respect

to E by solving equations ∂Qe(E,ϑ(old))
∂θp

= 0, and

∂Qe(E,ϑ(old))
∂ωp

= 0, which gives the following solution:

θ
(new)
p =

(

X
T
ΓpX

)

−1

X
T
Γpy, (17)

ω
(new)
p =

∣

∣

∣

∣

∣

∣
y(Γ,p) −X(Γ,p)θ

(new)
p

∣

∣

∣

∣

∣

∣

2

Tr(Γp)
, (18)

where Γp = diag(γ
(old)
p (1), γ

(old)
p (2), . . . , γ

(old)
p (k)) is a

diagonal matrix, and y(Γ,p) and X(Γ,p) are defined in
(19)-(20). As can be noticed, the maximization of Qe

(15) is equivalent to a weighted least squares problem,

where the responsibility γ
(old)
p (i) is the importance of

each sample.

In this work, the parameters of each model θ(new)
p

(17) will be solved using the PLS algorithm. In the PLS
algorithm, from (1)-(2), the inputs X and output y are
traditionally represented through their approximation
with M latent and loading variables representation, i.e.
X ≈ TPT and y ≈ TBQT . However, solving (17) after
replacing these approximations is not straightforward.
A simpler approach is to multiply both X and y by
√

Γp, so that the weighted representation of X and y
becomes equal to:

X(Γ,p) =
√

ΓpX ≈ T(Γ,p)P
T
(Γ,p), (19)

y(Γ,p) =
√

Γpy ≈ T(Γ,p)B(Γ,p)Q
T
(Γ,p), (20)

where X(Γ,p) and y(Γ,p) are the weighted inputs and
output matrices of model p with weight matrix Γp.
T(Γ,p) and P(Γ,p) are the PLS latent and loading matri-

ces of the weighted input X(Γ,p), and B(Γ,p) and QT
(Γ,p)

are the PLS latent and loading matrices of the weighted
output y(Γ,p). It is assumed that the weighted input
and output decomposition for expert p through the PLS
algorithm is made with Mep latent variables.

Then, by replacing (19) and (20) into (17), the pa-
rameters of model p can be written as:

θ
(new)
p =

(

P(Γ,p)P
T
(Γ,p)

)

−1

P(Γ,p)B(Γ,p)Q
T
(Γ,p). (21)



4.3 Modeling the Gates with the PLS Algorithm

Let the gate parameters be V = {vp| p = 2, . . . , P},
where vp is the regression coefficient of gate p. In this
work, the gate of each expert in (4) is modeled using the
softmax function as follows:

υp(i) = p (zp(i) = 1|x(i),V) = (22)

=







1

1+
∑

P
l=2

exp(xT(i)vl)
, p = 1,

exp(xT(i)vp)
1+

∑
P
l=2

exp(xT(i)vl)
, p = 2, . . . , P,

(23)

where υp(i) is used as a simplified notation for
υp(x(i),V).

It can be seen that (23) keeps valid the constraint
∑P

p=1 p (zp(i) = 1|x(i),V) = 1. Then, the gate contri-

bution Qg(V,ϑ(old)) to Q(ϑ,ϑ(old)) (see (10), (14)) can
be rewritten as:

Qg(V,ϑ
(old)) =

k
∑

i=1

[

P
∑

p=2

γ
(old)
p (i) xT(i)vp −

P
∑

p=1

γ
(old)
p (i) ln

(

1 +
P
∑

l=2

exp(xT(i)vl)

)]

. (24)

In order to find the parameters V to update the
gating parameters in the M step, it is necessary to max-

imize equation (24). The maximization of Qg(V,ϑ(old))
with respect to each gate parameter vp will be obtained
by the iterative reweighted least squares (IRLS) method
(Jordan, 1994; Nabney, 1999) as follows:

v
(new)
p = v

(old)
p +

[

−
∂2Qg(V,ϑ(old))

∂vpvT
p

]

−1 [

∂Qg(V,ϑ(old))

∂vp

]

.

(25)

From (24), the derivatives in (25) can be obtained:

[

−
∂2Qg(V,ϑ(old))

∂vpvT
p

]

−1

= (XT
RpX)−1

, (26)

[

∂Qg(V,ϑ(old))

∂vp

]

= X
T
up, (27)

where Rp = diag(υp(1)(1 − υp(1)), υp(2)(1 −
υp(2)), . . . , υp(k)(1 − υp(k))) is a diagonal matrix and

up = [γ
(old)
p (1)− υp(1), γ

(old)
p (2)− υp(2), . . . , γ

(old)
p (k)−

υp(k)]
T . After some manipulations, equation (25) can

be transformed to:

v
(new)
p =

(

X
T
RpX

)

−1

X
T
Rpzp, (28)

where zp = Xv
(old)
p − R−1

p up. Now the parameters
vp for p > 1 can be solved using the PLS algorithm,
similarly to the method that was used to determine
the expert parameters (Section 4.2). Using (1)-(2), the
weighted input and output values are written in terms
of their latent and loading variables as follows:

X(R,p) =
√

Rp X ≈ T(R,p)P
T
(R,p), (29)

z(R,p) =
√

Rp zp ≈ T(R,p)B(R,p)Q
T
(R,p), (30)

where X(R,p) and y(R,p) are the weighted input ma-
trix and weighted output vector of model p with weight
matrix Rp, and T(R,p) and P(R,p) are the latent and
loading matrices of weighted input X(R,p) and similarly,

B(R,p) and QT
(R,p) are the latent and loading matrices of

weighted output z(R,p) = [z(R,p)(1), . . . , z(R,p)(k)]
T . It

is assumed that the weighted input and output decom-
position through the PLS algorithm is made with Mgp
latent variables.

Then, from (28)-(30) the parameters vector of each
gate p is updated using the PLS algorithm as follows:

v
(new)
p =

(

P(R,p)P
T
(R,p)

)

−1

P(R,p)B(R,p)Q
T
(R,p). (31)

5 Experimental Results

This section presents experimental results of the Mix-
PLS applied in one batch polymerization process, pre-
sented in (Facco et al., 2009). As the objective of this
work is to evaluate the proposed method, and not dis-
cuss the process itself. Only a short description of poly-
merization process is given as follows. The objective
in the polymerization data set is the estimation of the
quality of a resin produced in an industrial batch poly-
merization process (Facco et al., 2009). The resin quality
is determined by the values of two chemical properties:
the resin acidity number (NA) and the resin viscosity
(µ). The dataset is composed of 24 input variables and
521 samples for train and 133 for test.

In the experiments, the Mix-PLS, Mix-LS and PLS
models will be tuned by using as input of the model the
original variables (i.e. without any transformation on
them) and the squared values of these variables; the ob-
jective while using the squared values of input variables
is to introduce some nonlinearity into the linear models
(Mix-PLS, Mix-LS and PLS). In the experiments the
proposed Mix-PLS method will be compared with the
Mix-LS, a single PLS model, a MLP trained using the
gradient descent (MLP) training algorithm, and a LS-
SVR with Gaussian kernel (Suykens et al., 2002, Chap-
ter 3). From the results, it can be seen that Mix-PLS
attains better results when compared with Mix-LS, PLS
and to the MLP and LS-SVR non-linear models. More-
over, the Mix-PLS has the advantage of having more in-
terpretability with respect to its parameters when com-
pared with non linear models MLP and LS-SVR.



Table 2: NRMSE results on the test set.

Data set name Mix-PLS Mix-LS PLS MLP LS-SVR
Poly.: (Viscosity) (Facco et al., 2009) 8.07 23.43 24.23 9.95 12.38
Poly.: (Acidity) (Facco et al., 2009) 3.62 5.54 4.25 3.93 5.94

Table 3: Parameters selected for each model in each
experiment.

Data set Mix-PLS Mix-LS PLS MLP LS-SVR

Viscosity P = 2 P = 2 M = 10 N = 3
γLS-SVR = 50

σLS-SVR = 10

Acidity P = 2 P = 2 M = 17 N = 3
γLS-SVR = 50

σLS-SVR = 25

In all data sets the normalized root mean square
error (NRMSE) was used as a performance measure to
compare the results of the methods:

NRMSE =

√

∑k

i=1

(

y(i)− ŷ(i)
)2

max (y)−min (y)
, (32)

where y(i), and ŷ(i) are the observed and predicted
targets, respectively, and max(y), and min(y) are the
maximum and minimum values of the observed target.
NRMSE is often expressed in percentage. The closer the
NRMSE is to 0 the better is the quality of prediction.

5.0.1 Polymerization Data-Set

This data set was studied in (Facco et al., 2009), and
the objective is to estimate the viscosity and acidity of
a resin produced in an industrial batch polymerization
process. The number of hidden nodes N of the MLP and
the regularization parameter γLS-SVR and the Gaussian
kernel parameter σLS-SVR of the LS-SVR were deter-
mined using a 10-fold cross validation. For the PLS
model the number of latent variables M , was deter-
mined using the BIC criterion. For the Mix-LS, and
Mix-PLS the numbers of experts P were obtained from
the method proposed in (Ng et al., 2006). Additionally,
for the Mix-PLS the set that contains the number of la-
tent variables for each expert and gates was determined
using the BIC criterion. Table 3 shows the parameters
obtained for each model and for each data set in the
experiments.

According with Table 2, for predicting the viscos-
ity, the Mix-PLS reached the best results among all the
models in terms of NRMSE. Inspecting the results from
the gates activation on the train and test set which are
presented in Figure 2, it is possible to note that the pre-
diction of the first expert is predominant at the begin-
ning of each batch, and the prediction of the two mod-
els are combined, usually at the end of each batch. The
Mix-PLS suggests, that for viscosity prediction, just two
models are necessary and that their prediction should be
combined at the end of each batch.

For predicting the acidity, the Mix-PLS also reached
the best results in terms of NRMSE, as indicated in
Table 2. The Mix-PLS and Mix-LS used 2 experts to
predict the acidity. The plots of gates and prediction

on the train and test sets were removed due the limited
number of pages.

As can be seen the Mix-PLS was successfully applied
on the Polymerization data set, delivering satisfactory
predition results. Moreover, Mix-PLS has shown better
results when compared with the nonlinear models.

6 Conclusion

This paper proposed the use of Mix-PLS to be used as
a soft sensor in a real batch polymerization process. In
the proposed Mix-PLS method, the solution of the mix-
ture of linear regression models is done using the par-
tial least squares regression model. The formulas for
learning were derived based on the EM algorithm. Fur-
thermore, in this work the proposed method has been
evaluated and compared with the current state of art
methods, encompassing the prediction of two variables.
The results obtained with Mix-PLS were superior when
compared with a Mix-LS, a single PLS, a MLP, and LS-
SVR models. Differently of the non linear models, the
Mix-PLS gives more interpretability to the prediction.

Future directions of this work are to research on
the implementation of the method in an online manner,
further increasing the applicability.
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