
MULTI-OBJECTIVE OPTIMIZATION FOR FAULT DETECTION USING A
MULTIVARIABLE WAVELET IDENTIFICATION PROCEDURE

Marco Aparecido Queiroz Duarte∗, Roberto Kawakami Harrop Galvão†, Henrique
Mohallem Paiva‡
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Abstract— This paper presents a multi-objective wavelet identification procedure for fault detection in dy-
namic systems. For this purpose, a multi-objective genetic algorithm is used to search for the Pareto frontier.
Two objectives are taken into account, the minimization of the residual signal in nominal operating conditions
and its maximization in faulty operating conditions. Thus, the proposed approach takes into account the effect
of the fault in the residue. The multivariable consistency check is compared with single variable consistency
checks to characterize the advantage of the multivariable approach, providing better fault detection results. For
illustration, a simulated example involving the detection of a sensor fault in 747 aircraft is presented.
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Resumo— Este artigo apresenta um procedimento multiobjetivo de identificação de parâmetros wavelets para
a detecção de falhas em sistemas dinâmicos. Para isto, um algoritmo genético multiobjetivo é usado na busca pela
fronteira de Pareto. Dois objetivos são levados em conta, a minimização do sinal residual em condições normais
de operação e a sua maximização em condições de falha. Assim, o método proposto leva em consideração o
efeito da falha no reśıduo. A verificação de consistência multivariável é comparada com a verificação de única
variável para mostrar que esta é vantajosa sobre a segunda, levando a melhores resultados na detecção de falhas.
Para ilustração, um exemplo simulado envolvendo a detecção de falha em um sensor em uma aeronave 747 é
apresentado.

Keywords— Detecção de Falhas, Fronteira de Pareto, Sistemas Dinâmicos, Wavelets, Otimização Multiobje-
tivo.

1 Introduction

Early detection of fault occurrences is of great
importance to the safe operation of dynamic sys-
tems, while reducing maintenance costs. Indeed,
after the detection of a fault in the system, ac-
tions can be taken to avoid damage to the en-
vironment, economic losses and loss of human
lives. For this purpose time-frequency decompo-
sition techniques, such as the wavelet transform
(WT)(Daubechies, 1992), can provide valuable in-
formation for the detection process. In fact, the
analysis in the frequency domain alone may not
reveal faults in their early stages, when the fault
signature is not periodic (Paiva et al., 2008).

The WT has been widely applied for fault
detection. In (Sartori and Sevegnani, 2010), it
was used in a noninvasive methodology to evalu-
ate and classify electrical systems failures. In (Li
et al., 2012), bearing faults were detected using
a wavelet scheme named adaptive morphological
gradient lifting wavelet (AMGLW). The adaptive
scheme of AMGLW suppressed the noise present
in the signal, emphasizing the fault features. In
(Djebala et al., 2012), WT and the Hilbert trans-
form were combined in order to detect and iso-
late fault in gears. The pairing of these tech-

niques allowed simultaneous filtering and denois-
ing, along with the possibility of detecting tran-
sitory phenomena and demodulation. In (Asfani
et al., 2012), the WT was used for processing the
motor current signal. Energy level of high fre-
quency signal from WT was used as the input for
a neural network which worked as a fault detection
system. In (Seshadrinath et al., 2012), the dual-
tree complex wavelet transform was used to detect
single-turn faults in induction motors. In (Paiva
et al., 2008), a SISO (single-input, single-output)
technique for fault detection was proposed where
the WT was directly employed to identify subband
models for the normal behavior of the system,
which are then used to generate a residual signal.
A filter bank implementation of the discrete WT
(Daubechies, 1992) was used to band-limit signals
acquired at different points of the dynamic system
under analysis. A consistency check was then car-
ried out within each of the bands defined by the
filter bank. Such a check was performed by com-
paring the system response with the output of a
finite impulse response (FIR) model. In (Paiva
et al., 2009), a multivariable extension of (Paiva
et al., 2008) was proposed in which several inputs
end/or outputs were simultaneously checked for
mutual consistency. In that case, the architecture



proposed in (Paiva et al., 2008) was modified to
allow the use of MIMO (multiple-input, multiple-
output) system identification methods. (Duarte
et al., 2013) presented a bi-objective treatment for
the cited approach, which consisted in minimizing
the residue in nominal operating conditions and
maximizing it in fault operating conditions. But,
that procedure was made as a linear combination
of the two objectives, leading to a mono-objective
cost function.

This paper is concerned in giving a multi-
objective identification procedure to the fault de-
tection method proposed in (Paiva et al., 2009)
and extended in (Duarte et al., 2013). In this
paper, the objectives are the same as in (Duarte
et al., 2013), but they will be separately treated
in order to generate Pareto frontiers for further
analysis.

The remainder of this paper is organized as
follows. Section 2 presents the necessary back-
ground to describe the proposed method and
multi-objective optimization process. Section 3
presents the proposed multi-objective optimiza-
tion procedure. Section 4 describes the applica-
tion example, which involves the detection of a
sensor fault in the simulation of a Boeing 747 air-
craft. The results are discussed in Section 5. Fi-
nally concluding remarks are presented in Section
6.

2 Background

In (Paiva et al., 2009), which extended the SISO
case in (Paiva et al., 2008) to a MIMO case, a
multivariable ARX (autoregressive with external
input) structure was adopted for each subband
model. Fig. 1 shows the scheme proposed in
(Paiva et al., 2009) for an input-output scheme,
which can be easily extended for an output-output
scheme by replacing plant input u and plant out-
put y by two plant outputs yb and ya. Filters H
and G indicate the low-pass and high-pass filters
associated to a particular wavelet, respectively.
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Figure 1: Wavelet-Based Frequency-Subband An-
alytical Redundancy Scheme. The dashed boxes
indicate the wavelet filter bank.

In the wavelet filter bank, the number of fil-
tering iterations leading to a given layer is termed

the decomposition level of the layer. In Fig. 1,
e.g., the filter bank has three decomposition lev-
els. The best decomposition level for fault detec-
tion depends on the spectral signature of the fault,
as well as the power spectrum density of the input
signal and the signal-to-noise ratio of the measure-
ments (Paiva et al., 2008). If the fault effect has
not been previously characterized, all levels should
be monitored simultaneously.

The outputs of the low-pass and high-pass fil-
ters are termed approximation and detail, respec-
tively. Subscripts iA and iD are used to indicate
the approximation and detail at the i -th decom-
position level, respectively. The wavelet coeffi-
cients DuiA (approximation) and DuiD (detail)
of the input signal u at the i -th decomposition
level, i > 0, are calculated as:

DuiA = (↓ 2)[h ∗Du(i−1)A] (1)

DuiD = (↓ 2)[g ∗Du(i−1)A] (2)

where (↓ 2) and ∗ denote the downsampling
and convolution operations, and h and g are the
discrete-time impulse responses to filters H and G,
respectively. The approximation Du0A at level 0
is equal to signal u itself. Similar equations can
be used to obtain the wavelet coefficients DyiA

(approximation) and DyiD (detail) of the output
signal y.

The ARX structure used in (Paiva et al.,
2009) is of the form (Ljung, 1999):

D̂y(k) =

na∑
i=1

AiD̂y(k − i) +

nb∑
i=1

BiDu(k − i),

Ai ∈ Rp×p, Bi ∈ Rp×m

(3)

where Du(k) ∈ Rm and D̂y(k) ∈ Rp correspond
to the input and output of the subband model
at time index k. Since each subband model is in-
tended to represent the plant behavior only within
a limited band, the orders na and nb can be
made small. Matrices Ai and Bi can be identi-
fied in order to minimize the 2-norm of the differ-
ence between the model predictions D̂y and the
wavelet coefficients Dy of the actual plant output.
For this purpose, a standard multivariable least-
squares identification method can be employed
(Ljung, 1999).

Both in (Paiva et al., 2008) and (Paiva et al.,
2009) a fixed wavelet was used to adjust the pa-
rameters of the models in order to minimize the
residue between the output of the system and the
predicted output. In (Duarte et al., 2013), the
concept of wavelet adaptation was exploited to
improve the MIMO method proposed in (Paiva
et al., 2009). For that purpose, two approaches
were considered. The first approach consisted
in optimizing the wavelet filter bank parameters
to minimize the residue under nominal operating
conditions, i.e., to improve the match between the



plant dynamics and the subband model employed
in the detector. The second approach also took
into account the effects of the fault, by using a bi-
objective procedure, minimizing the residue un-
der nominal operating conditions (fault-free) and
maximizing it under faulty operating conditions.
For both purposes, the wavelet filter bank was pa-
rameterized by using a vector of angular param-
eters θ ∈ Rn as in (Sherlock and Monro, 1988).
Those parameters were then optimized in order to
minimize the 2-norm of the residue under nominal
operating conditions. The bi-objective procedure
proposed in (Duarte et al., 2013) was performed
by a linear combination of the two objectives cited
above. The linear combination permitted a mono-
objective treatment to the proposed problem.

The present paper also exploits the concept
of wavelet adaptation over the proposal of (Paiva
et al., 2009) in a bi-objective way, but using multi-
objective optimization algorithms. The wavelet
procedure identification will be carried out by us-
ing multi-objective genetic algorithms (MOGA),
(Konak et al., 2006). The use of MOGA allows
the analysis of the Pareto frontier and the choice
of the point that leads to more sensibility (fault
detection) with low false alarm rate. The advan-
tage of using Pareto frontiers is in the fact that the
choice of the point to be analyzed could be made
by a selection criterion and this criterion could
be changed without the needing of computing the
Pareto frontier again.

2.1 Multi-objective Optimization

A multi-objective optimization (MOO) problem
has a different perspective when compared with
the one having a single objective. In the single-
objective optimization there is only one global op-
timum, but in MOO there is a set of solutions,
called Pareto-optimal (PO) set, which are con-
sidered to be equally important; all of them con-
stitute global optimum solutions (Bandyopadhyay
et al., 2008).

The MOO can be formally stated as follows
(Bandyopadhyay et al., 2008). Find the vectors
x̄∗ = [x∗1, x

∗
2, ..., x

∗
n]T of decision variables that

simultaneously optimize the M objective values
{f1(x̄), f2(x̄), ..., fM (x̄)}, while satisfying the con-
straints, if any.

The concept of domination is very important
in MOO. In the context of a minimization prob-
lem, a solution x̄i is said to dominate x̄j if ∀k ∈
1, 2, ...,M , fk(x̄i) ≤ fk(x̄j) and ∃k ∈ 1, 2, ...,M ,
such that fk(x̄i) < fk(x̄j).

Among the set of solutions P , the nondom-
inated set of solutions P ′ are those that are not
dominated by any member of the set P . The non-
dominated set of the entire search space S is the
globally PO set. In general, a MOO algorithm
usually admits a set of solutions that are not dom-

inated by any solution encountered by it.

3 Proposed Method

Let A = (A1, A2, ..., Ana) and B =
(B1, B2, ..., Bnb) be the matrices of the ARX
model (3) at a certain subband. Given the data
set DN = (uN ,yN ) of input/output signals
acquired under nominal conditions and a wavelet
filter bank described by a parameter vector
θ ∈ Rn, the model matrices A and B can be
identified by minimizing a cost function corre-
sponding to the 2-norm of the vector of residues
eD = (Dy − D̂y). In view of the dependence of
the resulting matrices with respect to the data
set and the filter bank, the cost function will be
denoted as

JN (A,B,θ;DN ) =
1

2
eDe

T
D, (4)

where superscript N is employed to indicate nomi-
nal operating conditions. The identification result
will be written as AN (θ), BN (θ), where

(AN (θ), BN (θ)) = argmin
A∈Rp×p,B∈Rp×m

JN (A,B,θ;DN).

(5)

When the objective is to minimize the residue
under nominal operating conditions using the
wavelet adaptation, a vector θ∗N is found in or-
der to minimize a cost function J̃N (θ) so that

J̃N (θ∗N ) = minθ∈RnJ
N (AN (θ), BN (θ),θ;DN ). (6)

On the other hand, in order to increase the de-
tector sensitivity with respect to the fault, it may
be convenient to adjust θ to maximize the residue
under faulty conditions, i.e., to maximize a cost
function J̃F (θ) so that

J̃F (θ∗F ) = maxθ∈RnJ
F (AN (θ), BN (θ),θ;DF ), (7)

where the superscript F indicates faulty operating
conditions.

In order to aggregate (6) and (7), i.e., to
achieve a compromise between minimizing the
residue under nominal operating conditions and
maximizing it under faulty conditions, the follow-
ing bi-objective cost function should be minimized

J̃NF (θ∗NF ) = minθ∈Rn [J
N (θ),−JF (θ)]. (8)

For a better graphical visualization of the
plots of JN × JF , (8) can be written in terms
of log10(JN (θ)) and log10(JF (θ)), leading to (9).

J̃NF (θ∗NF ) = minθ∈Rn [log10(J
N (θ)),−log10(JF (θ))].

(9)

In this paper, (9) will be adopted.
It is worth noting that the formulation pre-

sented here is the same presented in (Duarte



et al., 2013). But now, differently from the pro-
posal of (Duarte et al., 2013) the wavelet identifi-
cation procedure takes place directly using (9), in-
stead of a linear combination of the two objectives
in (8). This approach enables the choice of a point
in the Pareto frontier, the one that best matches
better sensibility and low false alarm rates.

4 Application Example

In order to test the proposed method, a simulation
model of the lateral dynamics of a Boeing 747 air-
craft in landing configuration (Bryson, 1985) was
used. This simulation model can be written as

v̇ṙ
ṗ
φ̇

 =

[−0.089 −2.19 0.328 0.319
0.076 −0.217 −0.166 0
−0.602 0.327 −0.975 0

0 0.150 1 0

][
v
r
p
φ

]

+

[
0 0.0327

0.0264 −0.151
0.227 0.0636

0 0

] [
δa
δr

]
+

[
0.089
−0.076
0.602

0

]
d

(10)
where v is the sideslip velocity, r is the yaw rate, p
is the roll rate, φ is the roll angle, δa is the aileron
angle, δr is the rudder angle, and d is an exogenous
disturbance (lateral wind velocity). The adopted
units are feet, seconds, and crad (0.01 rad). The
system is operated under a control law of the form

[
δa
δr

]
= −

[
−4.15 7.6 5.36 5.57
3.43 −14.24 0.62 −0.24

] [v
r
p
φ

]
(11)

which places the closed-loop poles at −2, −1 and
−1± 2j (Paiva et al., 2008). Each measured state
is assumed to be corrupted by an additive white
noise with a standard deviation equal to 2% of
the standard deviation of the true signal. The
disturbance d was generated as a low-pass-filtered
Gaussian noise with a standard deviation of 10
ft/s.

The problem consists of detecting a gain re-
duction in the rate gyro responsible for measuring
the yaw rate r. Fig. 2 presents an example of a
fault at tf = 100 s. Training and test signals were
acquired with a sampling frequency fs = 100 Hz.
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Figure 2: Simulation of the 747 aircraft model
with a fault at tf = 100 s (angles in degrees).

5 Fault Detection Results

In order to apply the proposed fault detection
method, the db8 wavelet filters (Daubechies,
1992) were used as a starting point for the op-
timization procedure. The choice for these fil-
ters was based on the results presented in (Paiva
et al., 2008), (Paiva et al., 2009) and (Duarte
et al., 2013). The optimization process for MOGA
was carried out by a MATLAB implementation as
in the MATLAB R© Global Optimization Toolbox.

In this work, the detection threshold was fixed
as four times the standard deviation of the residue
in nominal operating conditions. For fault detec-
tion, as in (Paiva et al., 2009), the overall fault
monitor, in Fig. 1, declared a fault if any thresh-
old detector was activated.

In the aircraft simulation, the proposed
wavelet method was applied to check the consis-
tency between sensors using SISO and MIMO ap-
proaches. For the SISO approach, consistencies
between sensors (p, r) and (φ, r) were checked. In
those cases, in Fig. 1, y = r and u = p or
u = φ. For the MIMO approach, consistency be-
tween sensors (p, φ) and r was checked. Now, in
Fig. 1, u = [p φ]T and y = r. Three wavelet de-
composition levels were used in the wavelet filter
banks. The ARX orders were the same adopted
in (Paiva et al., 2009) for each subband model,
namely which will be na = 1 and nb = 2. For
the three consistency checks, Pareto frontiers were
generated for each wavelet decomposition level.

Fig. 3 shows the Pareto frontiers for the three
consistency checks. Observing Fig. 3, it is possible
to note that, in each wavelet decomposition level,
the point that best comprises the minimization of
JN and the maximization of JF is the one that
maximizes the distance of the green diagonal line.
The choice for this point provides JN << JF ,
which is desired for appropriated fault detections.
In this context, it is worth noting that, for each
wavelet decomposition level, the multivariable ap-
proach has the best point, while (φ, r) has the
worst. It is also worth noting that the solutions of
the Pareto frontier of (p, φ, r) are never dominated
by the solutions in the Pareto frontiers of (p, r) or
(φ, r), but they dominate almost all of the points
of (p, r) or (φ, r).

In (Paiva et al., 2009) the db8 wavelet filters
(Daubechies, 1992) were used as a fixed wavelet in
the identification procedure for the ARX model.
Fig. 4 presents the Pareto frontiers of (p, φ, r)
and the point for the fixed db8 filters, also for
(p, φ, r), for three wavelet decomposition levels. In
Fig. 4, it is possible to observe the advantage
of the use of MOO in the wavelet identification
process, since the point representing the fixed db8
filters is very close to diagonal line, in each wavelet
decomposition level.

Further tests for fault detection were carried
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Figure 3: Pareto frontiers for the three consistency
checks, for three wavelet decomposition levels.
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Figure 4: Pareto frontiers for multi-objective
(p, φ, r), and the points for the fixed db8 filters,
for three wavelet decomposition levels.

out by choosing a point for each consistency check
in each Pareto frontier in Fig. 3 for the three
wavelet decomposition levels, according to the ob-
servation made in the last paragraph, i.e., the one
that maximizes the distance from the diagonal line
in the graph. For tests, a gain reduction of 30%
in the rate gyro was adopted, and 11 realizations
were performed with different seed values for the
noisy disturbance. Data for the obtainment of the
Pareto frontiers and for the identification proce-
dure were carried out for a 50% gain reduction in
the rate gyro.

In order to clarify the advantage of one
methodology over the others, the following met-
ric Γ was evaluated (Paiva et al., 2008):

Γ =
max(abs(residueafter−fault))

max(abs(residuebefore−fault))
(12)

which characterizes the residue amplification after
fault occurrence. Large values of Γ are desired be-
cause they allow the use of a larger residue thresh-
old in the fault detection scheme, thus minimizing
the probability of false alarms.

For illustration, Fig. 5 shows the residues ob-
tained using the three consistency checks for a
particular fault simulation. In Fig. 5 the horizon-
tal dashed lines indicate the threshold for fault
detection, the vertical dashed lines indicate the

fault onset at t = 100 s, td is the detection de-
lay, defined as the difference between the instant
when the residue exceeded the threshold and the
instant when the fault occurred, and Γ indicates
the residue amplification according to (12).
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Figure 5: Subband residues for details, at the
third wavelet decomposition level, obtained by
processing signals depicted in Fig. 2 with consis-
tency checks (a) (p, r), (b)(φ, r), and (c) (p, φ, r).

Table 1 presents Γ values (average and stan-
dard deviation) obtained applying the points cho-
sen in the Pareto frontier, for three wavelet decom-
position levels of the consistency checks. Compar-
ing Γ values presented in Table 1, it is easy to note
that the multivariable approach is advantageous
over the single variable approaches, leading to the
largest values of Γ. Mainly, for the third wavelet
decomposition level, where the multivariable value
for Γ was much larger than the ones for the single
variable approaches.

Table 2 shows, for the third wavelet decom-
position level, the average detection delay td and
its standard deviation (out of eleven simulations)
for each consistency check, when a 30% gain re-
duction in the rate gyro was performed. For the
three consistency checks, no false alarm was is-
sued. The mean value for td was calculated by
considering only the successful detections, i.e., by
ignoring false alarms and nondetected faults. As
can be seen, again, multivariable approach was
better than the other two approaches, leading to
smaller detection delays. This shows that a fault
could be detected faster when two or more sensors
are used for consistency check with the sensor con-
taining the fault.

The results presented in Tables 1 and 2 and in
Fig. 5 showed that the consistency check (p, φ, r)
provided a better estimate of the output r than
when only p or φ were used to check consistency
with r.

6 Conclusion

This paper extended a recent wavelet-based mul-
tivariable fault detection method to a multi-
objective optimization formulation for the wavelet
identification procedure. The multi-objective pro-



Table 1: Comparison Between Mean Values of Γ
(eleven simulations) obtained for different wavelet
decomposition levels, for a 30% gain reduction in
the rate gyro.

Level (p, r) (φ, r) (p, φ, r)
1 1.73 ± 0.06 1.18 ± 0.03 1.92 ± 0.03
2 2.48 ± 0.10 1.63 ± 0.06 2.85 ± 0.08
3 2.73 ± 0.05 0.93 ± 0.01 6.63 ± 0.06

Table 2: Mean detection delay, td, for the three
consistency checks, at the third wavelet decompo-
sition level, for a 30% gain reduction in rate gyro.

Approach td(s)
(p, r) 1.3 ± 0.11
(φ, r) Nondetected

(p, φ, r) 0.45 ± 0.01

cedure consisted in minimizing the residue in
nominal operating conditions and maximizing
it in faulty operating conditions. Besides the
multi-objective formulation, comparisons between
multivariable and the single variable consistency
checks were also subject in this paper. Fault de-
tection was carried out by checking the mutual
consistency of two or three different sensor sig-
nals of a simulation of the lateral dynamics of a
Boeing 747 aircraft in landing configuration. In
order to show that the multivariable consistency
check is advantageous over the single variable one,
using multi-objective genetic algorithms, Pareto
frontiers were obtained, showing that the multi-
variable provides points in the Pareto frontier that
conduces to better results than the single variable
approach. Choosing a point for each Pareto fron-
tier, it was shown that the multivariable consis-
tency check provided better results than the oth-
ers, since faults were detected for all wavelet de-
composition levels in less time with no false alarm
occurred. Analyzing the residues in nominal and
fault operating conditions, it was shown improve-
ment in sensitivity of the multivariable approach
with respect the single variable approach. This
was due to fact that for multivariable approach
the residue amplification after the fault occurrence
was much larger than for the single variable ap-
proach.
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