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Abstract This article deals with classification problems involving unequal probabilities in each class and discusses metrics 

that can be used in systems of multilayer perceptrons neural networks (MLP) developed for the task of classifying new patterns. 

We proposed three new methods of pruning that were compared with other existing methods in the literature for MLP networks. 

All pruning algorithms presented in this paper have been modified by the author to do pruning of neurons, in order to produce 

fully connected MLP networks and small in its intermediary layer. Experiments were carried out involving one unbalanced clas-

sification problem and ten pruning methods. The proposed methods showed good results; and had obtained better results than 

another pruning methods previously defined at the mlp neural network area. 

Keywords Artificial neural networks (theory and applications), pattern recognition, unbalanced data, pruning methods, mlp 

neural network. 

Resumo Este artigo trata de problemas de classificação envolvendo probabilidades desiguais em cada classe e são discutidas 

métricas que podem ser usadas em sistemas de redes neurais de múltiplas camadas (MLP) desenvolvidos para a tarefa de classi-

ficar novos padrões. São propostos três novos métodos de poda que foram comparados com outros métodos já existentes na lite-

ratura para redes MLP.  Todos os algoritmos de poda apresentados nesse artigo foram modificados pela autora para realizar poda 

de neurônios, com o objetivo de produzir redes MLP completamente conectadas e pequenas em sua camada intermediária. Fo-

ram realizados experimentos envolvendo um problema de classificação desbalanceado e dez métodos de poda. Os métodos pro-

postos mostraram bons resultados, tendo obtido resultados melhores que outros métodos de poda previamente definidos na área 

de redes neurais. 

Palavras-chave Redes neurais artificiais (teoria e aplicações), reconhecimento de padrões, dados desbalanceados, métodos de 

poda, redes neurais mlp

1    Introduction 

Classification problems have received great emphasis 

in the area of computational intelligence, which has 

produced systems and programs that assist profes-

sionals in making decision when classifying a new 

element in one of several possible classes. However, 

not all classes have the same probability of occur-

rence in the population. In some cases, very rare 

events may be determined in the class, which makes 

the task of classifying a new pattern very difficult. An 

example presented in [1] related to banking transac-

tions with credit cards believes that 1% of transac-

tions are fraudulent, then a model that predicts every 

transaction as legitimate has an accuracy of 99%, 

although it fails to detect any fraudulent activity. 

Therefore, appropriate measures should be used to 

focus the rare class. Section 2 discusses different 

metrics, and an illustrative example is shown for their 

comparison in unbalanced classification problems. 

The multilayer neural networks, known as MLP net-

works are largely used to construct classifiers. A ma-

jor problem for the use of MLP networks is to define 

the size of the initial network about their hidden lay-

ers and number of neurons. One technique is to set 

the initial network with more neurons than necessary 

thereby it is possible to obtaining a faster classifier, 

and implement pruning methods, which are able to 

determine which neurons in the network could be 

removed without a severe impairment of the per-

formance of classification network. However, the 

pruning algorithms are targeted to cut neurons dis-

playing only the decrease of misclassification, which 

is not very suitable for problems with unbalanced 

data. 

In this paper we present in Section 3 several pruning 

methods known to the MLP network, and are pro-

posed three new pruning methods. However, the al-

gorithms are modified so that other metrics are con-

sidered most appropriate to problems involving un-

equal probabilities in each class. In Section 4, the ten 

pruning methods described are applied to the Ecoli 

unbalanced problem obtained from the database [2] 

containing seven classes. 



The Section 5 presents the final conclusions for the 

classification problems discussed and the techniques 

employed. 

2   Metrics for assessment of the classification 

Initially, start from the Bayesian decision theory, 

considering a classification problem with two classes: 

P1 and P2. For each object is observed a measurement 

vector x with px1 order on the X random variables 

vector of interest. Each class presents the density 

probability functions f1(x) e f2(x), respectively. Let Ω 

be the sample space, R1 the region where the objects 

are classified in Class P1, and R2=Ω-R1 the region 

destined to objects belonging to the class P2. Since 

every object must be assigned to only one of two 

classes, the sets R1 e R2 are mutually exclusive and 

exhaustive. Let p1 and p2 be the prior probabilities of 

the classes P1 and P2, respectively, where p1+p2=1.  

The performance of a classifier can be assessed by 

calculating the ratio of the current error (AER): 
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where 1R̂  and 2R̂  represent the classification re-

gions determined by the sample sizes n1 e n2, and the 

functions f1(x) and f2(x) are known.  

More details on the Bayesian decision theory can be 

found in [3]. An estimate of AER, given in (1), may 

be obtained directly from the confusion matrix con-

structed using the classifier. This estimate is called 

the apparent error rate (APER). 

Given n1c=number of elements in the population P1 

correctly classified,  n2c=number of elements in the 

population P2 correctly classified, n1m=number of 

elements in the population P1 incorrectly classified 

and n2m=number of elements in the population P2 

incorrectly classified, as shown in Table 1. 

Table 1. Classification Matrix or Confusion Matrix. 

True Class Classified as 

P1 

Classified as 

P2 

Total 

P1 n1c n1m n1 

P2 n2m n2c n2 

Total n1c+ n2m n1m+ n2c N= n1+ n2 

 

The apparent error rate APER is given by (2): 
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The value of APER is usually presented as a percent-

age, and is obtained by the proportion of the incor-

rectly classified items in the training dataset. How-

ever, the APER tends to underestimate the true value 

of AER. But, there are other ways to evaluate the 

error obtained by a classifier. One method is the 

Leave-one-out by Lachenbruch and Mickey [3], 

which also requires no assumptions about the distri-

butions. This method consists in removing an element 

of the sample, build the classifier using the (n1+n2)-1 

remaining elements and classify the element that was 

left out. Repeat the procedure until all elements have 

been removed, and the end, calculate the error APER 

obtained considering all the elements that were left 

out. The drawback of this procedure is that it must be 

built a classifier at each step, and for some types of 

binders, such as for MLP neural networks, may be 

impractical depending on the overall size of the sam-

ple. This method is more suitable for classifiers that 

do not demand a very high computational time in the 

construction of a model. 

Another way is to divide the data set into two parts. 

One part is used for training on which the classifier is 

constructed, and the other to validate it, and, should 

consider the error APER obtained in the validation 

dataset, also known as test dataset, as an estimate of 

the AER more consistent with the true value.  

The disadvantage of this method is that not all sam-

ples are used to build the classifier, which may end 

up not considering important features of problem that 

could be present in the test samples left and not used 

in the construction of the classifier. Moreover, an 

advantage of this method would be that the classifier 

would be tested in a dataset that has not been used for 

its construction, a fact that would allow the calculated 

error APER was much closer to the true value, and 

thus more suited to the capacity generalization of the 

model or classifier. 

Reference [4] presents several evaluation measures to 

access the performance of a classification model. The 

following describes some evaluation measures, and 

propose another measure. 

Below are given some definitions that can be ob-

tained from the confusion matrix (Table 1), which 

metrics will be used in this section: 

• True P1 Rate: TP1rate = n1c / (n1c + n1m )= n1c /n1 

• True P2 Rate: TP2rate = n2c / (n2m + n2c)= n2c /n2 

• False P1 Rate: FP1rate = n2m / (n2m + n2c)=n2m/n2 

• False P2 Rate: FP2rate = n1m / (n1c + n1m )= n1m /n1 

• P1 Predictive Value: P1Pvalue = n1c / (n1c + n2m) 

• P2 Predictive Value: P2Pvalue = n2c / (n1m + n2c). 

 

2.1 Apparent Error Rate (APER) 

The classification error APER defined in (2), and 

obtained by the classifier is a commonly used meas-

ure. The smaller the error APER, the better the classi-

fier, however, as we shall see below, this is not an 

appropriate measure to find the best classifier in 

problems with unequal sample sizes of classes. 



2.2 F-measure 

The F-measure is considered when the class P1 is 

considered the most important. And in this case, the 

following rates are used Recall (R=Recall=TP1rate) 

and Precision (P=Precision=PP1value), being the 

measure defined by F-measure= 2RP/(R+P). 

The measure defined above may be reduced to the 

harmonic mean between R and P, such as F-

measure= 2/[(1/R)+(1/P)]. 

2.3 G-mean 

The G-mean measure is indicated when both cases 

are also of interest. In this case, the True P1 Rate 

(TP1rate) and the True P2 Rate (TP2rate) are ex-

pected to be high simultaneously.  The measure G-

mean=(TP1rate x TP2rate)
1/2

.  

The disadvantage of this metric is that if a class has 

null classification rate, the measure will be zero, re-

gardless of the result in another class. 

2.4 Proposed Proportional Apparent Error Rate 

(APERP) 

We propose another measure that is able to evaluate 

the classification ability of a classifier, which we call 

proportional error rate (APERP), that concerns in the 

average proportions of the errors committed in each 

class, and FP2rate and  FP1rate. The reason is given 

in (3): 

2
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As such given in (3), unlike the G-mean, if one of the 

classes provide zero error ratio still will be possible 

to calculate the capacity rating for the class remain-

der obtained.  

Example 1 

Consider as an example a two-class problem, for 

which were built two different models for classifica-

tion: Model A and Model B. The rating results from 

each model are presented in Tables 2 and 3, respec-

tively. 

Table 2. Classification Matrix or Confusion Matrix of Model A. 

True Class Classified as 

P1 

Classified as 

P2 

Total 

P1 250 20 270 

P2 10 20 30 

Total 260 40 300 

Table 3. Classification Matrix or Confusion Matrix of Model B. 

True Class Classified as 

P1 

Classified as 

P2 

Total 

P1 240 30 270 

P2 0 30 30 

Total 240 60 300 

 

In this example it will be presented a classification 

problem with unbalanced classes with 90% of the 

data belonging to the class P1 and 10% to the class 

P2. It will be applied only the APER metrics and the 

APERP proposed measure due to unsuitability of the 

measure F-measure for dealing with problems where 

both classes are important, and due to the replace-

ment of the metric G-mean by APERP for the reasons 

already mentioned in the definition of thereof. 

The classification error apparent APER metric pre-

sented in (2) is estimated by the total obtained in the 

secondary diagonal, divided by the total sample. The 

classification error obtained by the Model A is: 

APERA = (n1m+n2m)/(n1+n2) =(20+10)/(270+30) = 

30/300=0.1. 

The same error value is obtained by the Model B: 

APERB = (n1m+n2m)/(n1+n2) =(30+0)/(270+30) = 

30/300=0.1. 

If we calculate the expected correctly classification 

rate, which is complementary to the error rate, we 

would have 0.9 or 90% accuracy for both models. 

However, even with misclassification APER being 

equal, it is noted that Model B is more able to clas-

sify the elements of Class 2 than Model A, with a 

moderate decrease in class 1 correct classification. 

This can be observed when calculating the propor-

tions of errors made in each class separately. For 

Model A, the errors would APERPA = 0.2037 and for 

Model B, APERPB = 0.0555. 

Therefore the models A and B produced correct clas-

sification (1-APER) for 79.63% and 94.44%, respec-

tively. It can be note clearly that the model B pre-

sented the best result for the two models, as it was 

expected to observe the data in Tables 2 and 3. Thus, 

it can be concluded that the classification measure 

APER as defined in (2) is not suitable because it re-

sults the same value for both models, while the model 

B is better than A. 

Thus, the apparent proportional error ratio (APERP) 

proposed in (3), is more suitable for unbalanced 

problems where there is interest in both classes. A 

generalization to a classification problem of c classes 

is: APERP = [(n1m/n1) +  (n2m/n2) + ... +(ncm/nc)] / c. 

This measure is the average of the error rate observed 

in each class, and it belongs to the range of 0 to 1, or, 

in terms of percentage range of 0 to 100%. Thus, 

when selecting a classifier based solely on the error 

APER produced we may be failing to choose the best 

classifier. And in that sense, all results involving this 

measure to select classifiers with unequal class sizes 

should be reviewed. 

3   Pruning Methods to MLP Neural Networks  

There are some neural network models [5], in this 

article we will consider a MLP network, with one 

hidden layer (SLFN). Let [x(n),t(n)] denote the n
th

 (n 



= 1, ..., N) training pattern where x(n)=[x1(n), …, 

xd(n)]
T
 is the d-dimensional input feature vector and 

t(n)=[t1(n), …, tc(n)]
T 

 corresponds to the desired c-

class output response. Let W
(1)

={wji
(1)

(n)} and 

W
(2)

={wkj
(2)

(n)} be the matrix of synaptic weights 

which connect the input to hidden layers and the hid-

den to the output layers, respectively. The optimiza-

tion procedure for classification consists of minimiz-

ing the sum of the mean square errors between the 

network output yk(n) and the desired output tk(n), 

defined as ∑
=

=
N

n

nEE
1
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Assuming that g
(1)

 and g
(2)

 are activation functions of 

sigmoid logistic type (5): 
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The k
th

 network output yk(n) is given by: 
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where M is the number of hidden neurons.  

The pruning methods that will be described later, will 

use the output of the j
th

 neuron in the hidden layer 

(j=1,...,M), defined as:  
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The main goal of pruning methods is to reduce the 

network architecture in order to perform classifica-

tion with speed and economy. When the pruning 

methods are constructed to remove the synaptic 

weights, the end result is the production of a large 

and sparsely connected network with multiple zero 

weights. However, these weights remain physically 

on the network. To prevent this from occurring, the 

pruning methods presented in this section have been 

adapted by the author to theoretically perform prun-

ing of neurons, and be able to produce final fully 

connected networks because neurons that contribute 

little or nothing to the classification are excluded 

from the network. Thus, the network end will be 

much smaller and the classification of a new pattern 

will be much faster. 

In [6], we performed a comparative experiment in-

volving the initial network, called control method, for 

which there is no pruning method applied, and vari-

ous methods of iterative pruning and non-iterative. 

Iterative methods remove a neuron in each step, and 

the non-iterative methods are executed in a single 

step. Through experimental results, it was found that 

only the iterative pruning methods were able to re-

duce the number of neurons. Following are the prun-

ing methods that will be used in this work. 

3.1 Pruning Methods previously defined at the mlp 

neural network area 

3.1.1 Iterative Brutal Force (FBI) 

The method called Brutal Force (FB), initially pro-

posed by [7], was restructured theoretically in [8] to 

detect and remove neurons that have little influential. 

This method consists in defining a neuron with zero 

and evaluate the change caused the error E given in 

(4), using the measurement  

∑
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)( , tal que,  Sj=E(zj(n)=0)-E(zj(n)).  

When we define E(zj(n)=0), all synaptic weights con-

necting neuron j to the input and output layers are 

reset to zero, and an approximate value for E is ob-

tained for a network without the presence of that neu-

ron. And now (zj(n)) is the value of E with all weights 

of the network associated with this neuron. If Sj is 

small, then the neuron j can be removed from the 

network. This will be done using the procedure 

searches backward (BPT), removing a neuron in each 

step of pruning. This method was called FBI. 

3.1.2 Apparent Rate Error Training (APERT) 

The method APERT also proposed in [8] uses the 

ratio of observations that were classified incorrectly 

by the network (due to the apparent error: APER), 

which will then be calculated on the training set. The 

variable Sj=APER(zj=0)-APER(zj) is adopted as a 

measure of the importance of each neuron. The error 

ratio is expressed as a percentage, which in general is 

easily calculated from the confusion matrix. The 

pruning process is iterative and is removed from the 

neuron with the smallest value Sj at each step of prun-

ing.  

3.1.3 Optimal Brain Damage (OBD) 

In the OBD pruning method proposed by [9], the 

measure of importance of each neuron is given by 
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The derivatives are obtained by the chain rule and it 

is defined )())(( nznz jj −=∆ . 

3.1.4 Saliency (SAL) 

The SAL method is defined in [10] and it adds the 

first derivative to (8), as defined in (9), such that:  
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(9) 

The method is iterative and removes of the network 

that neuron j with the smallest value of Sj at each 

step.  



3.1.5 Dynamic Pruning (PD) 

This method was first time proposed in [11], and uses 

the smaller measure: 
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to detect the neuron that must to be removed in each 

iterative pruning pass.  

 

3.1.6 Iterative Pruning (PI) 

This method was defined in [12] and uses the same 

measure the PD, given in (10), to select the neuron 

that must be removed from the network. However, 

the adjustment of synaptic weights remaining is done 

by the conjugate gradient algorithm of the precondi-

tioned normal equation. 

3.1.7 Pruning based on Bayesian Decision Bounda-

ries (PEB) 

This method is proposed in [8], and the measure of 

salience used is similar to the measure used in the PD 

method given in (10), except for the exclusion of the 

quadratic terms in this way, the measure Sj represents 

all synaptic activity, excitatory and inhibitory related 

to neuron j in the exact form as it occurs: 
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3.2 Proposed Pruning Methods  

In this section it will be presented tree new pruning 

methods: the APERTP, the KAPPA and the CHI 

method. 

3.2.1 Apparent Training Proportional Error Rate 

(APERTP) 

The APERTP method uses the metric APERP, equa-

tion (3), or its generalization to more than two 

classes, and calculated on the set of training data as a 

measure of Sj and removes the network neuron j with 

the lowest value Sj in each step of pruning. 

3.2.2 KAPPA 

This method uses the Kappa coefficient of agreement 

proposed by [13] as a measure of Sj. In [14], the 

Kappa measure was used to evaluate the errors ob-

tained directly on the confusion matrix for image 

classification problems, but in this paper we propose 

to use it as a measure of importance of a neuron in 

the network on the task of classifying a pattern. 

The Kappa coefficient is calculated from the values 

of the confusion matrix obtained by a classifier, and 

the higher the value the better the agreement between 

the rows and columns of the matrix, i.e., the better 

the performance of the classifier. A zero value of 

Kappa coefficient means that the successes of the 

classifier were by chance, while a positive value indi-

cates that the Kappa hits were not by chance and a 

negative value means that the successes of the classi-

fier are worse than classification by chance and a 

value of one means perfect classification. 

To a problem with c classes the measure Sj  is defined 

as: 
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where nk. is the sum of the k
th

 row of the confusion 

matrix, and on the other hand, n.k is the sum of the k
th

 

column. The higher the value of Sj the better is the 

network performance in the classification. 

To find which neuron has to be removed at each step 

of pruning, Sj is calculated without the neuron j to be 

present on the network. This is done by zeroing out 

all the synaptic weights connecting the neuron j to the 

neuron input layer and the network output layer. The 

measure Sj must be calculated for all network neurons 

intermediaries. The neuron j that present the greatest 

value Sj must be removed from the network, because 

it means that without his presence the classification 

performance of the network was best evaluated 

among neurons in that step. 

3.2.3  Chi-Squared (CHI) 

In this method, we suggest the use of  
2χ  measure of 

the statistical test Chi-Squared Pearson [15], used for 

test the independence between the rows and columns 

of a contingency table, in our case, we consider the 

table as the confusion matrix. The higher the value of 

the statistic, the better the performance of classifica-

tion, and the greater the frequency of elements on the 

main diagonal of the matrix, exactly where are posi-

tioned the correct classifications. We must calculate 

the value of the statistic for each one of the interme-

diary neuron in the network, and consider 

nnnE lkkl /..=  and Sj according to equation (13): 
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4   Application for unbalanced classification pro-

blem 

The Ecoli classification problem presented in this 

section are available in [2] and contain seven imbal-

ance classes. They were defined as N = 336 sample 

units, d=7 features (variables) and c=8 classes: Class 

1 (cytoplasm), Class 2 (inner membrane without the 

signal sequence), Class 3 (periplasm), Class 4 (inner 

membrane with no signal sequence attached), Class 5 

(outer membrane), Class 6 (outer membrane lipopro-

tein), Class 7 (inner membrane lipoprotein) and Class 

8 (with the inner membrane attached signal se-

quence). The experiment consisted on training 10 

mlp neural networks containing 15 neurons at the 

intermediary layer, and it was applied all pruning 

methods described in the Section 3. The training 



dataset contain 252 observations and the test data has 

84 patterns. 

The dataset were divided into two parts: one contain-

ing approximately 75% of the observations for train-

ing and the remaining 25% for testing, respecting the 

internal percentage of each class. It was applied the 

z-transformation to the variables, i.e., all variables 

were transformed to have zero mean and unit vari-

ance. 

We used the following parameters in the definition of 

MLP network: we used the logistic sigmoid activa-

tion function defined in (9), with the slope parameter 

p=0.8; the backpropagation algorithm for training 

without regularization parameter; the learning ratio 

used was equal to 0.9; the time constant was equal to 

zero and stopping criterion of training as the Euclid-

ean norm of the gradient vector estimate of proposed 

[5] less than or equal to 0.05. It was generated 10 sets 

of uniform initial weights between the range [-0.1; 

0.1]. 

Ten pruning methods were applied to MLP networks 

already trained and named as Control network. It was 

considered the APERP metric applied to the training 

set rather than APER when evaluating the best net-

work, and noted the value of APERP in the test set. 

This is a differential analysis because studies involv-

ing pruning found in previously mentioned refer-

ences, used the APER measurement error to assess 

the ability of generalization of MLP networks built, 

and as seen in Section 2 that is not the metric most 

suitable for unbalanced data. 

The Figure 1 contains a boxplot graphic for each 

pruning method. Looking at Figure 1 we can see that 

the results of APERP for the test set are high, but 

between the proposed methods, the methods KAPPA 

and CHI show better results as the median (line in-

side the box) which are less than the method control. 

We can note that the PI method is very close to the 

values of the control network, which illustrates its 

characteristic not to favor the reduction of the error 

APERP, but keeping it at the same level of network 

Control. 

5 Conclusions 

In this article we presented reasons to use the metric 

proportional APERP instead of APER. We proposed 

three new methods for pruning MLP which can be 

easily programmable in computer languages. The 

proposed methods were applied to the Ecoli dataset 

classification problem containing seven unbalanced 

classes. From the results obtained in the experiments 

it can be concluded that the proposed methods 

showed good results compared to the others, how-

ever, the KAPPA and CHI methods were better than 

APERTP in relation to the new metrics APERP pro-

posed. 
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 Figure 1. APERP of the pruning methods applied to Ecoli test 

dataset. 
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