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Abstract— This paper presents the design of a controller that allows a four-rotor helicopter to track a desired
trajectory in the 3D space. To this aim, a dynamic model obtained from Euler-Lagrange equations is used to
describe the robot. Such model is represented by numerical methods and, from this approach, the control actions
for the operation of the system are obtained. The proposed controller is easy implementation and presents a
good performance.
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Resumo— Este artigo apresenta o projeto de um controlador que permite a um helicóptero de quatro rotores
rastrear uma trajetória desejada no espaço 3D. Para este objetivo, um modelo dinâmico obtido a partir das
equações de Euler-Lagrange é usado para descrever o robô. Esse modelo é representado por meio de métodos
numéricos e, a partir desta abordagem, as acções de controle para a operação do sistema, são obtidos. O
controlador proposto é simples e apresenta um bom desempenho.

Keywords— Rastreamento de trajetória; Quadrimotor; Métodos Numéricos; Álgebra Linear.

1 Introduction

In the last decades, the research effort related to
Unmanned Aerial Vehicles (UAV) has grown sub-
stantially, aiming at either military or civil appli-
cations, such as inspection of large areas in pub-
lic safety applications, natural risk management,
inspection services of power lines, intervention in
hostile environments, infrastructure maintenance
and precision agriculture. In such cases, the use
of a UAV is extremely advantageous, compared to
the use of one or even several Unmanned Ground
Vehicles (UGV), due to its 3D mobility.

Unmanned aerial vehicles can be classified as
fixed-wing, rotary-wing and blimps. The main ad-
vantage of rotary-wing over fixed-wing aircraft is
the ability of hovering and having omnidirectional
movement. A disadvantage is, however, a rela-
tively higher power consumption during the flight.
Among the rotary-wing aircraft classification, a
quadrotor is much simpler and easier to build in
comparison to a classical helicopter, since it has
no swashplate and is controlled by varying only
the angular velocity of each of the four motors.

The control of quadrotor helicopters has at-
tracted the attention of many researchers in the
past few years. In the literature, different control
strategies have been proposed, some of them use
linear control techniques. In (How et al., 2008),
the LQR was used for accurate orientation and po-
sition control oft MIT’s RAVEN quadrotors. An
approach based on switched dynamics and gain

scheduling was proposed in (Gillula et al., 2011),
that allowed a small quadrotor to perform acro-
batic maneuvers. In this method, the behavior of
the systems is approximated as a discrete set of
simpler hybrid modes representing the dynamics
in specific portions of the state space.

In (Kendoul et al., 2010), the design of a non-
linear flight control system and its implementa-
tion on a quadrotor are presented. The controller
was designed by deriving a mathematical model of
the quadrotor dynamics and exploiting its struc-
tural properties to transform it into two cascaded
subsystems (attitude and translation) coupled by
nonlinear interconnection term. Nonlinear con-
troller based on the dynamic inversion technique
can also by used for acrobatic and aggressive ma-
neuvers control, as demonstrated in (Mellinger
and Kumar, 2011). The developed algorithm gen-
erates optimal trajectories through a sequence of
3D positions and yaw angles.

In this paper it is presented a control tech-
nique which is able to follow piecewise continuous
trajectories with piecewise continuous derivatives.
It represents a new control approach whose orig-
inality is based on the application of numerical
methods and linear algebra for trajectory track-
ing of a quadrotor. This simple approach sug-
gests that knowing the value of the desired state,
you can find a value for the control action, which
forces the system to move from its current state
to the desired one. In (Scaglia et al., 2009) and



(Rosales et al., 2011) it is introduced the numeri-
cal method-based controller, where the control law
depends on the chosen numerical approximation.
This controller allows trajectory tracking control
as well as positioning control, because it only de-
pends on the reference values. The paper is orga-
nized as follows: in section 2, the dynamic model
of a four rotors helicopter is presented. In section
3, the helicopter model is aproximated by using
numerical methods and the expression of the pro-
posed controller is obtained. In section 4, simula-
tion results of the control algorithm validate the
theoretical results and show the characteristics of
the proposed controller, and finally in section 5
experimental results with the control system are
showed. In section 6, the conclusions of the paper
and the proposals for future work, are presented.

2 Dynamic Model of a Quadrotor

In this section, the dynamic model of the four-
rotor helicopter using Euler-Lagrange equations is
obtained. This can be described in full in (Castillo
et al., 2005). The generalized coordinates of the
aerial vehicle are

q = (x, y, z, ϕ, θ, ψ) ∈ ℜ6 (1)

where ξ = (x, y, z) denotes the position of center
of mass of the helicopter related to the inertial
frame ⟨e⟩, and η = (ϕ, θ, ψ) ∈ ℜ3 are the Euler
angles (with ϕ being the roll angle, θ the pitch
angle and ψ the yaw angle in the spatial frame
⟨s⟩). They represent the helicopter orientation as
shown in Figure 1.

Figure 1: Diagram of a 6-DOF quadrotor and the
associated frames ei, si and bi represent the iner-
tial, spatial and body frame, respectively.

Defining the Lagrangian:

L(q,q̇) = Ttrans + Trot − U (2)

where Ttrans = m
2 ξ̇

T ξ̇ is the translational kinetic
energy, Trot = 1

2ω
T Iω is the rotational kinetic

energy, U = mgz is the potential energy of the

system, z is the vehicle height, m denotes the he-
licopter mass, ω is the angular velocity, I is the
inertia matrix and g is the gravitational accelera-
tion. The full dynamic model of the helicopter is
obtained from the Euler-Lagrange equations with
external generalized forces:

d

dt

∂L

∂q̇
− ∂L

∂q
=

[
Fξ
τ

]
(3)

where Fξ = RF ∈ ℜ3 is the translational force
applied to the vehicle caused by the main control
input and R is a rotational matrix R(ϕ, θ, ψ) that
represent the orientation of the quadrotor relative
to inertial frame and τ ∈ ℜ3 represent the mo-
ment of pitch, roll and yaw. The principal input of
the aircraft is the impulse of the four propellants,

F = [0 0 u]T (4)

from (Kondak et al., 2007),

u =
4∑
i=1

fi; with fi = kiω
2
mi, for i = 1, ..., 4. (5)

The parameter ki is taken as a positive constant
value and ωi is the angular velocity of the i − th
motor. The generalized torques are:

τ =

τϕτθ
τψ

 =

(f3 − f1)l
(f2 − f4)l∑4

i=0 τMi

 (6)

where l is the distance between the motors and
the center of gravity, and τMi is the torque pro-
duced by the motor Mi, i = 1, ..., 4 around the
center of gravity of the vehicle. Observing that
the Lagrangian function does not contain terms in
the kinetic energy combining ξ̇ with η̇, the Euler-
Lagrange equations can be divided in the dynam-
ics for the coordinates of ξ and the coordinates of
η, as follow

mξ̈ + [0 0 mg]T = Fξ (7)

Jη̈ + J̇ η̇ − 1

2

∂

∂η
(η̇TJη̇) = τ (8)

Defining the Coriolis terms as

C(η,η̇)η̇ = J̇ η̇ − 1

2

∂

∂η
(η̇TJη̇) (9)

which contain the gyroscope and centrifugal ef-
fects associated with η. Finally we get,

mξ̈ + [0 0 mg]T = Fξ

Jη̈ + C(η,η̇)η̇ = τ (10)

In order to simplify the model, the following
change in the input variable is proposed

τ = C(η,η̇)η̇ + Jτ̃ (11)



where τ̃ = [τ̃ϕ, τ̃θ, τ̃ψ], is the new input vector.
Then

η̈ = τ̃ (12)

Finally, we obtain:

mẍ = −u sin θ
mÿ = u cos θ sinϕ

mz̈ = u cos θ cosϕ−mg (13)

ϕ̈ = τ̃ϕ

θ̈ = τ̃θ

ψ̈ = τ̃ψ

where x and y are the coordinates in the horizontal
plane, z is the vertical position, and τ̃ϕ, τ̃θ and τ̃ψ
are the roll, pitch and yaw torques respectively,
which are related to the generalized torques τϕ, τθ
and τψ by Eq. (11).

3 Controller Design

3.1 Problem Statement

Consider the following differential equation,

ẏ = f(y,t) y(0) = y0 (14)

With the objective to determine the value of y(t)
in discrete time instants t = nTo, where To is the
sample period and n ϵ {0, 1, 2, 3, ...}. The value of
the variable y(t) for t = nTo, will be symbolized as
y(n). Thus, if you want to calculate y(n+1) know-
ing the value of y(n), (14) should be integrated in
the interval nTo ≤ t ≤ (n+ 1)To, as

y(n+1) = y(n) +

∫ (n+1)To

nTo

f(y,t)dt (15)

An approximate value of y(n+1) can be obtained
using numerical methods to calculate the integral
on the second member of (15). For example, it
can be calculated as,

y(n+1)
∼= y(n) + Tof(y(n),t(n)) (16)

which is called the Euler approximation. Even
existing other numerical methods to approximate
the integral in equation (15), in this paper we ap-
ply the Euler approximation to get the discrete
dynamic model of a quadrotor. Then, based on
this model, it will be obtained the optimal con-
trol actions that allow the helicopter to follow a
path previously established, by ultimately solving
a mean squares algebraic problem.

3.2 Controller design

In this section, it is designed a control law
capable of generating the signals [u, τ̃ϕ, τ̃θ, τ̃ψ],
with the objective that the helicopter position
[X(t), Y(t), Z(t),Ψ(t)] follows the desired trajectory

[Xd(t), Y d(t), Zd(t),Ψd(t)]. The relationship be-
tween the generalized pairs and the new inputs
(τ̃) is given by (11).
The first step in the controller design involves ex-
pressing the model given in equation (13) in state
form as a set of linear first order differential equa-
tions,



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9
˙x10
˙x11
˙x12



=



x2
− u
m

sinx9
x4

u
m

cosx9 sinx7
x6

u
m

cosx9 cosx7 − g
x8
τ̃ϕ
x10
τ̃θ
x12
τ̃ψ



where



x
ẋ
y
ẏ
z
ż
ϕ

ϕ̇
θ

θ̇
ψ

ψ̇



=



x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12


(17)

Using the Euler approximation and expressing in
matrix form and operating, we have



a11To 0 0 0

a21To 0 0 0

a31To 0 0 0

0 To 0 0

0 0 To 0

0 0 0 To

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

A



u(n)
m

τ̃ϕ(n)
τ̃θ(n)
τ̃ψ(n)


︸ ︷︷ ︸

w

=



∆x2(n)

∆x4(n)

∆x6(n) + gTo

∆x8(n)

∆x10(n)

∆x12(n)

∆x1(n) − Tox2(n)

∆x3(n) − Tox4(n)

∆x5(n) − Tox6(n)

∆x7(n) − Tox8(n)

∆x9(n) − Tox10(n)

∆x11(n) − Tox12(n)


︸ ︷︷ ︸

b

(18)
Where a11 = − sinx9(n), a21 = cosx9(n) sinx7(n)
and a31 = cx9(n)cx7(n) and was replacing the next
relationship ∆xi(n) = xi(n+1) − xi(n). This equa-
tion can be expressed in compact form as.

Aw = b (19)

If the desired trajectory is given,
[Xd(n+1), Y d(n+1), Zd(n+1),Ψd(n+1)]

T , then
it can be taken into account to calculate the
required control action [u, τ̃ϕ, τ̃θ, τ̃ψ]

T , that
allows the helicopter to evolve from the present
position to the desired trajectory.
Equation (18) represents a system of linear
equations which allows at each sampling instant
to calculate the control actions (w) in order that
the quadrotor achieves the desired trajectory.
Now, it is necessary to specify the conditions for
this system to have an exact solution.

The first condition for the system of (18) to
have exact solution is that the first 6 equations
and 4 unknown variables has exact solution. It
can be concluded that these conditions are given



by (21) and (22).
− sin x9(n)

m
cos x9(n) sin x7(n)

m
cos x9(n) cos x7(n)

m

 [
u
]
=


∆x2

To

∆x4

To

∆x6+gTo
To

 (20)

tanx7ez =
∆x4

∆x6 + gTo
(21)

tanx9ez = −∆x2
∆x4

sinx7ez (22)

From (21) and (22) the variable references x7ez
and x9ez are obtained so that the system of equa-
tions (18) has exact solution and thus, the quadro-
tor can follow the reference trajectory. These vari-
ables represent the necessary orientations to allow
the tracking error to tend to zero.

Additionally, from (18) it can be seen that in
order that the system of equations have an exact
solution, the rows of b corresponding to the zero
rows of A must be equal to zero, then

xk(n) =
xjref(n+1) − xj(n)

To
(23)

j = {1, 3, 5, 7, 9, 11}

k = {1, 3, 5, 7, 9, 11}

From the previous equations, we obtain the speed
references that make the quadrotor follow the de-
sired trajectory.

In order that the tracking error tends to zero
for all the state variable that represent the posi-
tion and attitude (xi for i = 1, 3, 5, 7, 9, 11) of the
helicopter, the following expressions are defined,

xiref(n+1) = xdi(n+1) − kxi(xdi(n) − xi(n)) (24)

i = {1, 3, 5, 7, 9, 11}

where 0 < kx1, kx3, kx5, kx7, kx9, kx11 < 1.
After replacing (24) in (25), the velocities

necessary for the tracking error to tend to zero are
obtained. These values are the desired values to
make it possible to follow the trajectory correctly
and they are called with the subscript ”d” to
identify.

xdj(n+1) =
(xid(n+1) − kxi(xid(n) − xi(n)))− xi(n)

To
(25)

i = {1, 3, 5, 7, 9, 11}

j = {2, 4, 6, 8, 10, 12}

We apply the same approach structure that
the one expressed in (24) with the reference
speed values obtained in (25) to make the speed
quadrotor tend to the reference speed.

xjref(n+1) = xdj(n+1) − kxj(xdj(n) − xj(n)) (26)

j = {2, 4, 6, 8, 10, 12}

where 0 < kx2, kx4, kx6, kx8, kx10, kx12 < 1.

a11 0 0 0

a21 0 0 0

a31 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




u(n)
m
τ̃ϕ
τ̃θ
τ̃ψ

 =
1

To


∆x2

∆x4

∆x6 + gTo
∆x8

∆x10

∆x12

 (27)

Equation (27) is solved using the pseudo-inverse
matrix that represents the optimal least squares
solution (Strang, 1980), and in this way, we
obtain the control actions.

w = A†b (28)

4 Simulation results

This subsection presents two flight simulations of
the quadrotor in the 3D space, using the controller
designed in Section 3. The goal of the simulations
is to confirm the good performance of the control
law. The first simulation shows the performance
of the controller without model uncertainties and
disturbance.

The simulation is performed using a simulator
developed in the Matlab c⃝ platform, which con-
siders an accurate model of the vehicle (Pizetta
et al., 2012). The aircraft considerate in this work
is an ArDrone Parrot c⃝.

m = 0.380kg l = 0.20m To =
1
30
s

I = diag[9.57 18.57 25.55] · 10−3Nms2/rad

To check the performance of the proposed
controller, a helical path was used as desired
trajectory, centered at the origin of the iner-
tial frame whit radius 2m and the quadrotor
orientation (Ψd) set to π/2 radians. In order
to demonstrate that the proposed controller can
also be useful for position control, it is con-
sidered a reference point (Xd, Y d, Zd,Ψd) =
(0m, 0m, 12m,−π/2rad), and a final motion
to descend to the origin (Xd, Y d, Zd,Ψd) =
(0m, 0m, 0m, 0rad) of the inertial frame to com-
plete the simulation. The helical trajectory is gen-
erated with an upward velocity of vz = 0.8m/s
and an angular velocity of ω = 1rad/s. The ini-
tial position of the helicopter is at the frame origin
and the trajectory starts at position [0m; 0m; 2m].
The selected control gains are given in Table 1.

Fig.2 shows the 3D representation of the po-
sition of the vehicle, which succeeds in reaching

Table 1: Control gains used in the first simulation.
kx1 = 0.78 kx2 = 0.8 kx3 = 0.77
kx4 = 0.8 kx5 = 0.9 kx6 = 0.95
kx7 = 0.8 kx8 = 0.85 kx9 = 0.7
kx10 = 0.67 kx11 = 0.7 kx12 = 0.67



and following the desired trajectory. Also it can
be seen the evolution of the quadrotor to the de-
sired set points during positioning control.

Fig. 3(a) shows the time evolution of coordi-
nates ξ, which tend to the reference values. Figure
3(b) shows the time evolution of the attitude vari-
ables ϕ, θ and as ψ which also approximate their
reference values and Fig. 3(c) represents the con-
trol errors which tend to zero, including those of
the position control phase. Finally, Fig.3(d) rep-
resents the control actions (u, τϕ, τθ, τψ) expressed
by (5) and (6), which are the real control actions
directly applied to the vehicle.

5 Experimental Result

In this section is presented a real experiment
of yaw control and altitude tracking. In spite
of experiment displayed in this section is rela-
tively simple, the objective is to show the stabil-
ity and performance of the controller proposed in
3. In the experiment was used a quadrotor Parrot
ArDrone c⃝. The goal of the experiment is altitude
tracking combined with yaw control. The altitude
reference is giving by z = 0.5 + 0.25 sin( π10 t) and
a yaw reference of ψ = −π

4 . In Fig.4(a) is possible
to see the time evolution of the position variables,
and it is proved that the helicopter track the alti-
tude reference.

Fig.4(b) present the time evolution of the at-
titude variables is, and as from the start position
(ψ0

∼= −π
10 ) the quadrotor reach and maintain the

reference value −π
4 .

In 4(c) is showed the real action that was send
to the ArDrone and is possible to observe that the
last command that represent Ż, follow the varia-
tions of the altitude reference. Is possible to see
the error in the x and y variables (drifting), and
cause a undesirable variation in the evolution of
the position variables. The cause of this problem
is the data of the inertial sensors of the helicopter
that affect the odometry. Is possible to resolve
it throughout an extern position system, GPS o
artificial vision system.
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Figure 2: Evolution of the quadrotor position.
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(b) Attitude variables.

0 10 20 30
−0.2

−0.1

0

0.1

0.2

Time [sec]

E
x[m

]

0 10 20 30
−2

−1

0

1

2

Time [sec]

E
y[m

]

0 10 20 30
−10

−8

−6

−4

−2

0

Time [sec]

E
z[m

]

0 10 20 30

−3

−2

−1

0

1

Time [sec]

E
ψ
[r

ad
]

(c) Pose errors.
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Figure 3: Time evolution during simulation of tra-
jectory tracking of an helical reference.
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(b) Attitude variables.
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Figure 4: Time evolution during experimentation
using an ArDrone Parrot quadrotor.

6 Conclusions

In this paper, it is presented the design of a tra-
jectory controller for a four-rotors helicopter. To
this aim, an approximation of the helicopter dy-
namic model using numerical methods is used.
The proposed controller allows trajectory track-
ing as well as position control without switching
the controller. In addition, the controller is easy
to design and to implement with small computa-
tional complexity. It has been shown the good
performance of the controller through simulations
and real experiment, which shown the stability of
the vehicle during the task execution.

As future work it can be mentioned the exten-
sion of the controller proposal to other unmanned
aerial vehicles, and a systematic study of the ro-
bustness properties of the controller, as well as the
analytical limitation of control actions to ensure
its boundedness in any operation condition.
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