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Abstract: This paper presents the application of intelligent techniques to control an industrial mixer. Control design is based on 
Hebb learning for dynamic tuning of fuzzy cognitive maps. In this context, this paper develops a dynamical fuzzy cognitive map 

(D-FCM) based on Hebbian Learning algorithms. Two strategies to update FCM weights are derived. The D-FCM is used to con-

trol an industrial mixer. Simulation results of this control are presented. Finally, results are provided extending some of the algo-
rithms into the Arduino platform in order to acknowledge the performance of the techniques reported in this paper. 
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Resumo: Este artigo apresenta a aplicação de técnicas inteligentes para controlar um misturador industrial. Controle é baseado no 

aprendizado de Hebb para sintonia dinâmica de mapas cognitivos fuzzy, do inglês Fuzzy Cognitive Maps (FCM). Nesse contexto, 

este artigo desenvolve um mapa cognitivo fuzzy dinâmico (D-FCM) baseado no algoritmo de aprendizado Hebb. Duas estratégias 

para atualizar os pesos do FCM são derivadas. O D-FCM é usado para controlar um misturador industrial. Resultados de simula-
ção são apresentados. Por fim, são fornecidos resultados estendendo alguns dos algoritmos para uma plataforma Arduino a fim de 

reconhecer o desempenho das técnicas apresentadas nesse artigo. 

Palavras-chave: Mapa Cognitivo Fuzzy, Aprendizado De Hebb, Plataforma Arduino, Controle De Processo, Lógica Fuzzy. 

 

1 Introduction 

Artificial Intelligence (AI) has applications and 

development in various areas of knowledge, such as 

mathematical biology neuroscience, computer sci-

ence and others.  The research area of intelligent 

computational systems aims to develop methods that 

try to mimic or approach the capabilities of humans 

to solve problems. These news methods are looking 

for emulate human’s abilities to cope with very com-

plex processes, based on inaccurate and/or approxi-

mated information. However, this information can be 

obtained from the expert’s knowledge and/or opera-

tional data or behavior of an industrial system 

(Passino and Yourkovich, 1997). 

In this context, Fuzzy Cognitive Map (FCM) is a 

tool for modeling the human knowledge. It can be 

obtained through linguistic terms, inherent to fuzzy 

systems, but with a structure similar to the Neural 

Networks (NN), which facilitates data processing, 

and has capabilities for training and adaptation. FCM 

is a technique based on the knowledge that inherits 

characteristics of Cognitive Maps and Artificial Neu-

ral Networks (Kosko, 1986) (Glykas, 2010) (Kosko, 

1992) with applications in different areas of 

knowledge (Dickerson, 1994) (Lee and Lee, 2003) 

(Papageorgiou, 2007) (Papageorgiou, 2006) (Huang 

and Wang, 1999) (Koulouriotis et al., 2001). Besides 

the advantages and characteristics of inherited from 

these primary techniques, FCM was originally pro-

posed as a tool to build models or cognitive maps in 

various fields of knowledge. It makes the tool easier 

to abstract the information necessary for modeling 

complex systems, which are similar in the construc-

tion to the human reasoning. Thus, the Fuzzy Cogni-

tive Maps aggregate benefits of the acquisition, pro-

cessing and adaptability from data and information 

system to be modeled, with a capacity for intelligent 

decision making due to its heuristic nature. However, 

the FCM has troubles in time modeling, restricting 

for applications where the causes and effects occur 

simultaneously. 

In order to circumvent these drawbacks, dynam-

ical fuzzy cognitive maps, D-FCM, can be developed 

which have the capability to model and manage be-

haviors of non-linear time-dependent system and 

often in real time. Examples of different D-FCMs 
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can be found in the recent literature, as examples, we 

can cite Mendonça et al. (2013), Miao et al. (2010), 

Koulouriotis, Diakoulakis and Emiris (2001), Miao 

et al. (2001). 

Specifically, the work of Mendonça et al. (2013) 

presents a type of D-FCM, which aggregates the 

occurrence of events and other facilities that makes 

appropriate this type of cognitive map, for the devel-

opment of intelligent control and automation in an 

industrial environment. In this paper, we use the 

same D-FCM proposed to control an industrial mix-

ing tank.  

In this work, different from Mendonça et al. 

(2013), we use a hebbian algorithm to dynamically 

adapt the D-FCM weights. In order to validate our D-

FCM controller, we compared its performance with a 

classic fuzzy logic controller.  This comparison is 

carried out with simulated data. Moreover, to show 

the control portability, we embeded the D-FCM 

controller into a low cost platform based on Arduino. 

2 Development 

To demonstrate the evolution of the proposal 

technique (D-FCM) we will use a case study well 

known in the literature as seen in Passino and 

Yourkovich (1997), Axelrod (1976) and Stylios, 

Groumpos and Georgopoulos (1999) to test level 

controllers. This case was selected to illustrate the 

need for refinement of a model based on FCM built 

exclusively with knowledge. The process shown in 

Figure 1 consists of a tank with two inlet valves for 

different liquids, a mixer, an outlet valve for removal 

of liquid produced by mixing and density meter that 

measures the quality’ of the produced liquid.  

 

 

Fig. 1. Mixer Tank (Source: adapted from Stylios, Groumpos, 

Georgopoulos, 1999)  

To model the process, it will be considered the 

equations that govern the balance sheet mass in the 

tank, which states that the flow rate (mass) of water 

entering and leaving the less equal and variation of 

mass in the tank and details of valves and sensors not 

were addressed. 

Valves (V1) and (V2) insert two different liquids in 

the tank. During the reaction of the two liquids, a 

new liquid characterized by its density value is pro-

duced. At this time the valve (V3) empties the tank in 

accordance with a campaign output flow, but the 

liquid mixture should be in the specified levels. Alt-

hough relatively simple, this process is a TITO (two 

inputs two outputs) type with coupled variables. To 

establish the quality of the control system of the 

produced fluid, a weighting machine placed in the 

tank measures the (specific gravity) produced liquid.  

In this type of process, where the levels should be 

maintained at predetermined values to ensure its 

efficient functioning, we have two problems: the 

regulation, ie, fixed references and rejection of dis-

turbance, where often the process and taken manual-

ly until the point of operation, and the tracking tra-

jectory, which occur constant changes of reference. 

In this paper are addressed both problems. 

When the value of the measured variable G (liquid 

mass) reaches the range of values between the max-

imum and minimum [Gmin, Gmax] specified, the 

desired mixed liquid is ready. The removal of liquid 

is only possible when the volume (V) is in a speci-

fied range between the values [Vmin and Vmax]. 

The control consists to keep these two variables in 

their operating ranges, as, 

                        Vmin < V < Vmax                                    (1) 

and 

                        Gmin < G < Gmax                                   (2) 

According to Papageorgiou et al. (2005), through 

the observation and analysis of operation of the pro-

cess is possible for experts to define a list of key 

concepts related to physical quantities involved. The 

concepts and cognitive model is based on Papageor-

giou’s original FCM model, having the following 

concepts and structure: 

 

Concept 1 - State of the valve 1 (closed, open or 

partially open). 

Concept 2 - State of the valve 2 (closed, open or 

partially open). 

Concept 3 - State of the valve 3 (closed, open or 

partially open). 

Concept 4 - quantity of fluid (volume) in the tank, 

which depends on the operational state of the 

valves V1, V2 and V3. 

Concept 5  - value measured by the G sensor for the 

density of the liquid. 

 

Considering the initial proposed evolution for 

FCM we will use a D-FCM to control the mixer 

which should maintain levels of volume and mass 

within specified limits. 

The process model uses the mass conservation 

principle to derive a set differential equations 

representing the process used to test the D-FCm 

controller. As a result the tank volume is the volume 

over the initial input flow of the intake valves V1 and 

V2 minus the outflow valve V3. Similarly, the mass 

of the tank follows the same principle as shown 

below. 



                                                       (3) 

 

                    )        )       (4) 

 

Where Vi is the tank initial volume, V3 the outlet 

valve, V1 and V2 are valves 1 and 2 respectively, Mi 

initial mixture mass, me1 and me2 is the specific grav-

ity of the liquid 1 and 2 respectively and Mout is the 

mass removed by the outlet valve. 

The development of the D-FCM is accomplished 

through two distinct stages. First the D-FCM is de-

veloped as a classic FCM where concepts and causal 

relationships are identified. The concepts can be 

variables and/or control actions, as already men-

tioned. However, the heuristic is related to the con-

trol condition of volume or weight of the mixture as 

it increases, where the inlet valves are closed, thus 

making it possible to assign inverse causal relation-

ship between the concepts of levels and outlet valves. 

The output valve defines a positive relationship, 

when the output flow increases, according to a de-

sired campaign. The intake valves also increases 

proportionally.  The initial setting is done by using 

an algorithm based on heuristic optimization method 

of Simulated Annealing (Ghazanfari et al., 2007), in 

which an initial solution is cast as an initial guess and 

then solutions with a certain degree of randomness is 

tested systematically, until the system get the desired 

response. The figure 2 shows the schematic graph of 

a D-FCM controller. 

 

Fig. 2. D-FCM Controller 

The second stage of development of the D-FCM 

is responsible for tuning or refinement of the model 

for dynamic response of the controller. In this case, 

when a change of output set-point in the campaign 

occurs, the weights of the causal relationships are 

tuned. To perform this function a new kind of con-

cept and relation was included in the cognitive mod-

el. The relation selection assigns rules event-driven, 

which in this case was the change of set-point, levels 

of volume and weight of the liquid mixture.  

 

Table 1. Casual relationship weights 

State/Rules (D-
FCM) 

W31 W41 W32 W42 W51 W52 

Initial value 
-
0.35 

-
0.40 

-
0.35 

-
0,40; 

0,00 0,00 

Rule 2 

(Weight<840 

mg) 

-
0,35 

-
0,40 

-
0,35 

-0,40 0,20 0,20 

Rule 3 

(Weight<820 

mg) 

-
0,35 

-
0,45 

-
0,35 

-0,45 0,68 0,68 

 

The D-FCM uses the concept of selection for 

switching the set of causal relations according to the 

basic rules of relation selection. D-FCM works simi-

larly to a DT-FCM (Decision Tree - FCM) (Glykas, 

2010) in another way, the D-FCM resembles a hybrid 

tool between a FCM and a temporal cyclic state ma-

chine, switched by triggering events similar to the 

work of Acampora and Loia (2007). The results of 

the weights of the causal relations found are shown 

in Table 1. 

In order to establish a correlation and a future 

comparison between techniques of intelligent sys-

tems, a fuzzy controller was also developed. The 

fuzzy rule base implements weights assignment us-

ing the same heuristic control strategy. 

As a result, both controllers fuzzy and D-FCM can 

be run under equal conditions supporting perfor-

mance comparisons. As an example, we can mention 

some rules extracted from rule base established by 

experts: 

 

If VOLUME is HIGH, then V1 is LOW, V2 is LOW; 

 

If VOLUME is MEDIAN, then V1 is MEDIAN, V2 

is MEDIAN; 

 

If WEIGHT is LOW, then V1 is HIGH, V2 is HIGH; 

 

 In order to dynamic adapt the D-FCM weights we 

use the hebbian learning algorithm for FCM that is 

an adaptation of the classic hebbian method [2]. The 

initial values of causal relationships were developed 

in two ways: genetic algorithms and a method based 

on the heuristic method of simulated annealing used 

in the previous experiment.  

The genetic algorithm used was classic, with a 

population of 20 individuals, simple crossing and 

approximately 1% of mutation. The chromosomes 

were generated by real numbers with all weights of 

the D-FCM, individuals were random and the initial 

method of classification was the method of the tour-

nament with 3 individuals. And finally, the fitness 

function for simplicity considers the overall error of 

the two desired outputs. Figure 3 shows an evolution 

with 70 generations of the genetic algorithm pro-

posed.  



Table 2.  Final values generated by the genetic algorithm 

W. Val-
ues(D-
FCM) 

W13 W14 W23 W24 W53 W54 

Final 
Value 
A.G. 

-
0.2659 

-
0.2314 

-
0.2549 

-
0.2498 

0.1530 0.2146 

 

 
Fig. 3 – Evolution of the weights in the genetic algorithm 

 

Different proposals and variations of this method 

applied in tuning or in learning for FCM, are known 

in the literature (Papagergiou, 2012). In this paper, 

the method is used to update the intensity of causal 

relationships in a deterministic way according to the 

variation or error in the intensity of the concept or 

input variable. Specifically, the application of Hebb 

learning provides control actions as follows: if the 

weight or volume of the liquid mix increases, the 

intake valves have a causal relationship negatively 

intensified and tend to close more quickly. Converse-

ly, if the volume or weight mixture decreases, the 

valves have increased its causality pursuing a control 

region. The mathematical equation is presented in 

Dickerson and Kosko (1994).  

Two variations of the Hebbian learning will be 

presented. In the first case, a global error is assumed 

as the sum of the variation of only the volume con-

cept. In the second case , the variation of volume, 

weight and output valve affects the causal relation-

ships (fig. 2), for example, W51 and W52 are tuned 

according to the weight variation ∆Ai=V3(k)-V3(k-

1). All values of γ forgetting factor were empirical. 

Finally, so that variations of the weights had the 

dynamics needed, any errors or variations of A were 

multiplied by a factor 20 gain value.  

                                 )         )                     (5)  

∆Ai is the concept variation resulting from causal 

relationship, and it is given by ∆Ai = Ai(k)-Ai(k-1), γ 

is the learning rate at iteration k. 

Causal relationships that have negative causality 

has negative sign and similarly to positive causal 

relationships. Equations 6-11 show the implementa-

tion of the proposal. 

                        )                       (6) 

                        )                       (7) 

                        )                       (8) 

                        )                       (9) 

                        )                     (10) 

                        )                     (11) 

The results of D-FCM by Hebbian learning with 

only the volume parameter variation are shown in 

Fig. 5, which shows the behavior of the controlled 

variables within the predetermined range for the 

volume and the weight of the mixture. It is notewor-

thy that the controller keeps the variables in the con-

trol range and pursues a trajectory according to a 

campaign where output flow is also predetermined. 

In this initial experiment, a campaign with a se-

quence of values ranging from 7, 5 and 10 ml/min 

can be seen as set-point output flow (outlet valve). 

Fig. 6 shows the evolution of the weights of the 

causal relationships during the process. 

The fig. 7 shows the results of Hebbian learning 

algorithm for FCM considering the variations ΔAi of 

the concepts concerning volume, weight and outlet 

valve, while in the fig. 8 is displayed the weights of 

the causal relationship in the process. 

3 Experimental Results 

In order to extend the applicability of this work, 

the developed D-FCM controller is embedded into an 

Arduino platform which ensures the portability of the 

FCM generated code. Arduino is an open-source 

electronics prototyping platform which uses ATMega 

series microcontrollers. 

 
Fig 4. . Inputs and outputs valves, Volume and weight (Fuzzy) 



 
Fig. 5. Inputs and outputs valves, Volume and weight (HL global 

variation). 

 

Fig. 6. Causal Relationships in the process (HL global variation). 

 
Fig. 7. - Inputs and outputs valves, Volume and weight (HL punc-

tual variation) 

 Fig. 8. Causal Relationships in the process (HL punctual varia-

tion). 

The equations for level and weight are calculated 

by Matlab for simulating the process. Through a 

Serial communication established with Arduino, 

Matlab sends the current values of Volume, Weight 

and output valve to Arduino that receives these data, 

calculates the values of the concept 1 (valve 1) and 

concept 2 (valve 2) and then returns these data to 

Matlab. After this, new values of Volume and 

Weight are recalculated. 

 

 

Fig. 9. Cycle and image of the communication Matlab - Arduino 

 
Fig. 10. - Inputs and outputs valves, Volume and weight (DT, 

Arduino) 

Similarly, fig. 11 shows the results obtained with the 

Hebbian learning algorithm for FCM with the three 

parameters of ΔAi. 

 

Fig. 11. - Inputs and outputs valves, Volume and weight (HL, 

Arduino) 

 



Fig. 10 shows the results obtained with the Ar-

duino platform providing data of the actuators Valve 

1 and Valve 2 with Matlab performing data acquisi-

tion. The algorithm switches the sets of causal rela-

tions that operate similarly to a DT-FCM (decision 

tree - FCM), where the activation rules and weights 

are shown in Table 1.  

4 Conclusions 

Performing a comparison of the results, we see a 

decrease in the control range in the cases where there 

is variation in causal relationships by Hebbian learn-

ing algorithms. Figures 9 and 10 show the results. 

From the data obtained from Arduino by the varia-

tions of the D-FCM embedded in the platform, it is 

observed that the controlled variables are in well 

behaved ranges, which suggests that the D-FCM 

codes have low computational complexity due to the 

simplicity mathematical processing compared with 

the classical fuzzy logic, for example. Thus, we can 

emphasize the portability and the possibility of de-

veloping D-FCM controllers on low cost platforms.  

Future studies address a comparison with classical 

PID controllers, weighted Fuzzy controller or other 

intelligent controller. Finally, the application of the 

controller in a real mixer into a real data environment 

will be investigated. 
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