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AbstractThis work develops a knowledge based system to autonomous navigation using Fuzzy Cognitive Maps (FCM). A new variant of 
FCM, named Dynamic-Fuzzy Cognitive Maps, (D-FCM) is used to model decision tasks and/or make inference in the robot or mobile 

navigation. Fuzzy Cognitive Maps is a tool that modeling qualitative structured knowledge way through concepts and causal relationships. 

The proposed model allows representing the dynamic behavior of the mobile in presence of environment changes. A brief review of corre-
lated works in the navigation area by use of FCM is presented. Some simulation results are discussed highlighting the ability of the mobile 

to navigate among obstacle (navigation environment). A comparative with Fuzzy Logic and future works are also addressed. 

Keywords   Mobile Robot Navigation, Fuzzy Cognitive Maps, Dynamic-Fuzzy Cognitive Maps, Intelligent decision systems, 
Fuzzy Logic  

 

Resumo Este trabalho apresenta um desenvolvimento de um sistema autônomo inteligente de navegação baseado em Mapas Cognitivos 
Difusos (FCM). Uma nova arquitetura FCM, denominada Dynamic-Fuzzy Cognitive Maps (D-FCM), é usada para modelar tarefas de deci-

sões e/ou fazer inferências em um robô ou veiculo de navegação. FCM é uma ferramenta empregada para modelar conhecimento qualitativo 

em uma estrutura baseada em conceitos e relações causais. O modelo proposto permite representar comportamento dinâmico através de 
mudanças no cenário. Uma breve revisão de trabalhos correlatos da área de navegação empregando FCM é apresentada. Simulações mos-

tram desempenho e resultados para se avaliar a navegação entre obstáculos. Um comparativo com Lógica Fuzzy e futuros trabalhos finali-

zam o trabalho. 
 

Palavras-chave Navegação autônoma, Mapas Cognitivos Difusos, Mapas Cognitivos Difusos Dinâmicos, Sistemas Inteligentes em 

tomadas de decisão, Lógica Fuzzy. 

1    Introduction  

Artificial Intelligence (AI) has applications and 

development in various areas of knowledge, such as 

mathematical biology neuroscience, computer sci-

ence and others. The research area of intelligent 

computational systems aims to develop methods that 

try to mimic or approach the capabilities of humans 

to solve problems. These news methods are looking 

for emulate human’s abilities to cope with very com-

plex processes, based on inaccurate and/or approxi-

mated information. However, this information can be 

obtained from the expert’s knowledge and/or opera-

tional data or behavior of an industrial system 

(Passino and Yourkovich, 1997). 

An autonomous robot navigation system usually 

consists of an intelligent mobile robot and various 

sensors to detect the outside world. Based on the data 

captured by the sensors (Zhao and Wang, 2012). 

Researches in autonomous navigation are in stage of 

ascent. Autonomous systems has the ability to per-

form complex tasks with a high degree of success 

(Russel and Norvig, 1995). Complex robotic tasks 

such as trash collection using autonomous robots can 

be broadly applied to a variety of fields such as 

product transferring in manufacturing factory, rub-

bish cleaning in office, and bomb searching on battle 

field, etc. Such robots should be able to cope with the 

large amount of uncertainties existing in the physical 

environment (Wang, 2002). 

In this context, the complexity involved in the 

task of trajectory generation is admittedly high effi-

cient and, in many cases, requires that the autono-

mous system is able to learn a navigation strategy 

through interaction with the environment (Calvo, 

2007).  

There is a growing interest in the development 

of autonomous robots and vehicles, mainly because 

of the great diversity of tasks that can be carried out 

by them, especially those that endanger human health 

and/or the environment, Asami (1994) and Schraff 

(1994). As an example, we can cite a Mandow et al. 

(1996), which describes an autonomous mobile robot 

for use in agriculture, in order to replace the human 



worker, through inhospitable activities as spraying 

with insecticides.  

The problem of mobile robots control comprises 

two main sub problems: 1) navigation, determining 

of robot/vehicle position and orientation at a given 

time, and 2) guided tours, which refers to the control 

path to be followed by the robot/vehicle (Powley and 

Kor 1989).  

This work specifically proposes by decentralized 

control, achieving robot motion coordination by 

individual robot controllers. The development of an 

autonomous navigation system that uses heuristic 

knowledge about the behavior of the robot/vehicle in 

various situations, modeled by fuzzy cognitive maps 

Kosko (1986). In this case, the robot/vehicle deter-

mine a planning or generation of sequences of action 

in order to reach a given goal state from a predefined 

starting state.  

Through cognitive maps, beliefs or statements 

regarding a limited knowledge domain are expressed 

through language words or phrases, interconnected 

by simple relationship of cause and effect (ques-

tion/non-question). In the proposed model, the FCM 

relationships are dynamically adapted by rules that 

are triggered by the occurrence of special events. 

These events must change mobile behavior. There 

are various works in the literature that model heuris-

tic knowledge necessary for decision-making in 

autonomous navigation, by means of fuzzy systems 

Siraj, Bridges and Vaughn  (2001), Malhotra and 

Sarkar (2006), Astudillo et al. (2006), Min et al. 

(2006), Pipe (2000) and Yeap, Wong and Schmidt 

(2006). In a similar way, the approach proposed in 

this paper build qualitative models to mobile naviga-

tion by means of fuzzy systems. However the 

knowledge is structured and built as a cognitive map 

that represents the behavior of the mobile.  

Thus, the proposed autonomous navigation sys-

tem must be able to take dynamic decisions to move 

through the environment and sometimes it must 

change the trajectory as a result of an event. For this 

the proposed FCM model must aggregate discrete 

and continuous knowledge about navigation. Actions 

such as the decision to turn left or right when sensors 

accuse obstacles and accelerate when there is a free 

path are always valid control actions in all circum-

stances. In this way, this type of action is modeled as 

causal relationship in a classical FCM.  

However, there are specific situations, such as 

the need to maintain a trend of motion mainly in 

curves when the vehicle is turning left and sensors to 

accuse a new obstacle in the same direction. Due to 

inertia and physical restrictions, the mobile cannot 

abruptly change direction; this type of maneuver 

must be carefully executed. In this context, some 

specific situations should also be modeled on the 

map by causal relationships and concepts, but they 

are valid just as a result of a decision-making task 

caused by ongoing events. To implement such a 

strategy, new type of relationships and concepts will 

be added to the FCM classic model.  

This new type of FCM in which the concepts 

and relationships are valid as a result of decision 

driven by events modeled by rules and is called Dy-

namic-FCM. Specifically, the work of Mendonça et 

al. (2013) presents a type of D-FCM, which aggre-

gates the occurrence of events and other facilities 

that makes appropriate this type of cognitive map, for 

the development of intelligent control and automa-

tion in an industrial environment. 

The remainder of the paper is organized as fol-

lowing. Session 2 introduces Fuzzy Cognitive Maps 

concepts and provides a brief review of its applica-

tion in autonomous navigation. Session 3 describes 

the proposed D-FCM and develops the autonomous 

navigation system. Session 4 presents real environ-

ment, and same simulation results obtained with the 

proposed navigation system and fuzzy logic naviga-

tion system and session 5 concludes the paper and 

suggests future works. 

2   Fuzzy Cognitive Maps 

Cognitive maps were initially proposed by Axel-

rod (1976) to represent words, thoughts, tasks, or 

other items linked to a central concept and willing 

radially around this concept. Axelrod developed also 

a mathematical treatment for these maps, based in 

graph theory, and operations with matrices. These 

maps can thus be considered as a mathematical mod-

el of "belief structure" of a person or group, allowing 

you to infer or predicting the consequences that this 

organization of ideas represented in the universe. 

This mathematical model was adapted for inclu-

sion of fuzzy logic uncertainty through by Kosko 

(1986) generating widespread fuzzy cognitive maps. 

Like the original, FCMs are directional graph, in 

which the numeric values are fuzzy sets or variables. 

The "graph nodes", associated to linguistic concepts, 

are represented by fuzzy sets and each "node" is 

linked with other through connections. Each of these 

connections has a numerical value (weight), which 

represents a fuzzy variable related to the strength of 

the concepts through cause-effect. The concepts of a 

cognitive map can be updated through the iteration 

with other concepts and with its own value.  

For reasoning about cause-effect relationships, a 

bayesian network (BN) or structural equation model 

might be appropriate, but these approaches are lim-

ited in that the former does not allow for feedback 

between nodes and the latter is used to confirm a 

hypothesis about an existing causal structure rather 

than learn one from observational data. Fuzzy cogni-

tive maps are a relatively young methodology for 

modeling the cause-effect relationships of complex 

(nonlinear) systems where the causal structure of the 

system is represented as a signed, directed cy-

clicgraph with feedback (Fletcher, Duong and Cios, 

2005). 

In this context, a FCM uses a structured 

knowledge representation through causal relation-

ships being calculated mathematically from matrix 



operations, unlike much of intelligent systems whose 

knowledge representation is based on rules if-then 

type. However, due to this “rigid” knowledge repre-

sentation by means of graph and matrix operation, 

the FCM based inference models lack robustness in 

presence of dynamic modifications not a priori mod-

eled Chun-Mei (2008). To circumvent this problem, 

this article develops a new type of FCM in which 

concepts and causal relationships are dynamically 

inserted into the graph from the occurrence of events. 

In this way, the dynamic fuzzy cognitive map model 

is able to dynamically acquire and use the heuristic 

knowledge. The proposed D-FCM and its application 

in autonomous navigation will be developed and 

validated in the following sections. 

 

2.1 FCM in Autonomous Navigation 

As some related works which use cognitive 

maps in the robotics research area can be found in 

the literature. Among them, we can cite the work in 

Min et al. (2006) that employs probabilistic FCM in 

the decision-making of a robot soccer team. These 

actions are related to the behavior of the team, such 

as kick the ball in presence of opponents. The proba-

bilistic FCM aggregates a likelihood function to 

update the concepts of the map. 

Despite of the use of a known trajectory, actions 

are necessary due to errors and uncertainties inherent 

in the displacement of the robot, such as slippage, 

reading errors of the sensors, among others. A review 

of other related works employing intelligent naviga-

tion in robotics can be found in Yeap, Wong and 

Schmidt (2006). This paper also presents a Cognitive 

Map to implement a 3-D representation of the envi-

ronment where an autonomous robot must navigate. 

The described architecture use a previously stored 

neural network based model to implement adjust-

ments and course corrections of the robot in presence 

of noise and sensor errors. Similar to these works, we 

also use a fuzzy cognitive map to navigation tasks. 

 However our navigation system does not use a 

priori information about the environment. The FCM 

represent the usual navigation actions as turn right, 

turn left, accelerate and others. The adaptation ability 

to environment changes and to take decisions in 

presence of random events is reached by means of a 

rule based system. These rules are triggered in ac-

cordance of “intensity” of the sensor measurements. 

3 The D-FCM Model 

The development of a FCM model follows the 

steps listed in table 1. In the step 1, we identify 3 

inputs related to the description of the environment 

(presence of obstacles) and 3 outputs describing the 

mobile’s movements: turn left, turn right and move 

forward. The three inputs take values from the three 

sensors located at left, right and front side of the 

mobile.  

These concepts are connected by arcs represent-

ing the actions of acceleration (positive) and braking 

(negative). Three decisions are originally modeled, if 

left sensor accuses an obstacle in this position, the 

vehicle must turn to the right side and equally if the 

right sensor accuses an obstacle in the right side, the 

vehicle turns to the other side. The direction change 

decision implies smoothly vehicle deceleration. The 

third decision is related to a free obstacle environ-

ment; in this case the mobile follows a straight line 

accelerating smoothly. 

Table 1. Building FCM models 

Step 1: Identification of concepts and their roles (input, output, 

and selection), their interconnections, and/or selection of 

relationships determining their causal nature (positive, 
negative, neutral).  

Step 2: Initial data acquisition, through expert opinion and / or 

analysis of a mathematical model, or data analysis.  
Step 3: Submission of data concerning the views of various ex-

perts’ to a logical fuzzy system that has as output the val-

ues of FCM weights. 
Step 4: Treatment of information, adaptation and optimization of 

FCM by adjusting their answers to the desired output.  

Step 5: Validation of FCM model that is tested in the operation 
conditions of the system modeled. 

 

The initial FCM after execution of steps 1 to 4 is 

showed in figure 1. The input concepts are SL (left 

sensor), SR (right sensor) and SF (frontal sensor) and 

the output concepts are OutLeft, OutRigth and Out-

Front. The values of the concepts are the readings of 

the corresponding sensors. As a fuzzy number, these 

values are normalized into the interval [0, 1]. The 

relationships among these concepts are modeled by 

weights w1 to w5 which are computed. It is worth-

while to note in figure 1, that the concepts O.L. (-1) 

and O.R. (-1) are the values of the concepts in the 

previous state. This representation is equivalent to 

insert negative values (-1) in the corresponding diag-

onal positions of matrix W.  

We choose to retain this representation to high-

light that some concepts has memory.  In this case, 

the mobile can remember the actions taken to turn 

left or right and a zig-zag motion is prevented. As a 

result the mobile can maintain a movement trend. 

In order to model the adaptation ability, we in-

troduce 3 new concepts into the FCM associated to 

an “intensity” of motion (acceleration or braking) at 

each direction. There are left factor, right factor and 

front factor as shown in figure 1. The factor concepts 

have their values changed according to the current 

condition of the vehicle motion and the occurrence of 

events. These events are modeled by the weights ws 

in figure 1 which are obtained by applying the rules 

of type IF-THEN based on linguistic terms.  

These rules represent some decisions such as if 

the mobile is turning right because the left sensor has 

detected an obstacle and suddenly the right sensor 

also detects an obstacle then the factor right is small 

(ws3). The default value to factor concepts is one. If 

any rule is triggered the weights ws are null. Finally 

the outputs of the D-FCM are the product between 

the factor concepts and the output of classical FCM 

(OutLeft, OutRigth and OutFront). 

 



Fig. 1. The proposed D-FCM 

In conclusion, the proposed D-FCM navigation 

system confers to the robot/vehicle the following 

behavior: 

 The mobile is autonomous and it moves into 

unknown environment from an origin point 

to an end point.  

 If an obstacle is detected by the sensors in 

front, left and/or right positions the mobile 

must take a decision about new direction to 

follow. 

 Default navigation position is in a straight 

line with constant speed, i.e. lateral move-

ments are used only as a result of obstacle 

detection.  

 When the mobile is in motion and the sen-

sors don’t identify any obstacle, the mobile 

accelerates smoothly and then it remains in 

a constant speed. 

 Motion trend corresponds to an average be-

tween the current movement values and the 

values in immediately before instant, which 

prevents any sharp changes in direction of 

the mobile navigation.  

 When the mobile is turning in left or right 

direction and the opposite sensor detects an 

obstacle, the motion trend is maintained but 

the mobile is softly breaking until to 

reestablish a straight movement.  

Intelligent control architecture to the navigation 

system is shown in Figure 2.  

  

Fig. 2. D-FCM Navigation System Architecture 

The input interface read the sensor measure-

ments which are inversely proportional to the dis-

tance of obstacles. The D-FCM is the inference en-

gine that gathers the input data and the knowledge 

(values of weights w and ws) to take a decision about 

the movement of the robot/vehicle. The rule base 

block represents the heuristic knowledge to take 

decision in presence of conflicting events. The causal 

relationship block represents the structured 

knowledge about navigation. Thus, according to the 

inference result, control actions are sent to the actua-

tor by means of an output interface. 

In order to dynamic adapt the D-FCM weights 

we use the hebbian learning algorithm for FCM that 

is an adaptation of the classic hebbian method (Kos-

ko, 1986). Different proposals and variations of this 

method applied in tuning or in learning for FCM are 

known in the literature (Papageorgiou, 2012). 

 

                                             (1) 

 

Where:       is a new value of the weight, 

         old value, γ forget factor and error     

In this paper, the method is used to update the 

intensity of causal relationships in a deterministic 

way according to the variation or error in the intensi-

ty of the concept or input variable. In Mendonça, 

Arruda and Neves (2011) one similar proposal for 

dynamic tuning in FCM uses Reinforcement Learn-

ing Algorithm (Q-learning). In this case, the applica-

tion of hebbian learning provides control actions as 

follows: if an obstacle to the right is nearest the caus-

al relationship of exit turn left increases and conse-

quently increases its control action. The others action 

have same behavior. Forgetting factors were obtained 

from empirical mode. And finally minimum and 

maximum limits were placed due to the application 

of the method is to tune the dynamic D-FCM, there-

by varying the intensity of causal relationships 

should be within a clearly defined range. This range 

is defined by closed intervals, [0.35, 0.65] for   , 

[0.6, 1] for    and [0.6, 1] for   . This values were 

obtained empirically by observing the dynamic be-

havior of the mobile agent. 

 

                                            (2) 

                                            (3)  

                                           (4) 

 

Where:    is the weight related to front proxim-

ity sensor,    is the weight related to left proximity 

sensor and    is the weight related to the right prox-

imity sensor. 

A system of autonomous navigation using fuzzy 

logic was implemented in order to assess perfor-

mance, outcomes and differences in acquisition and 

processing of empirical knowledge used in develop-

ing the tool presented fuzzy logic. In this context, 

The work of the Harisha et al. (2008) is similar and 

presents a fuzzy control strategy similar, but only to 

calculate the desired speed mobile using 8 rules and 

input variables as the turning angle and distance of 

the obstacle. 

The Fuzzy system is implemented in this work is 

type Mandani with 3 inputs, 3 outputs and employs 

23 rules for abstraction of the same heuristic logic 

navigation controller inserted in the D-FCM. The 

inputs are the sensors, right, left and front and out-

puts are turning right, left and accelerate. These rules 



were implemented in an intuitive way according to 

heuristic D-FCM. For example: 

 

 IF the right sensor is strong THEN turn left 

strong. 

 IF the right sensor is weak THEN turn left 

weak. 

  IF right sensor and frontal sensor very 

strong THEN weak accelerate and turn left 

very strong   

 IF right, left and frontal sensor weak THEN 

accelerate Strong. 

4 Characterization/Simulation results 

The figure 3 show images a real problem using a 

commercial robot (Curumin/XBOT) in the environ-

ment with static and dynamic obstacles.  
 

 
Fig. 3. Real Environment with Dynamic Obstacle 

 

A 2-d animation simulated environment has in-

spired in real case and designed to test and validate 

our proposed navigation system. The kinematic equa-

tions simulating the robot dynamic behavior has been 

inspired by Malhotra and Sarkar (2005). In fact, the 

simulated robot corresponds to a mobile platform 

with two motors, and three sensors, one frontal, and 

two in each side. The sensors are ultrasound ones, 

and thus the perception of barrier or obstacle exist 

only within a scope zone of sensor. Moreover the 

intensity of the sensor measure is inversely propor-

tional to the distance of the object. 

This simulation environment has served initially 

to knowledge acquisition through observation data 

input and output, and observation of robot behavior 

in several situations. Afterwards, two experiments 

were performed to validate the D-FCM and Fuzzy 

System navigation systems. In both architectures, 

two different scenarios with static and dynamics 

obstacles have been simulated. The first experiment a 

dynamic obstacle is randomly inserted into the envi-

ronment, during the robot navigation.  

The results are presented in figures 4 and 5 they 

describe the path take by the fuzzy and D-FCM with 

hebbian learning algorithm. At Figure 4, the obstacle 

with coordinates (7.25, 96) is surprise, thus after the 

mobile executed half of the trajectory, this object 

enter in scenario. In Figure 5, these figures, the left 

graphic shows the scenario (x-y plan) with the initial 

(10, 0) and end point near (0, 160) of the robot trajec-

tory. The graphic shows the dynamic trajectory made 

by the robot. The apparent flaws in the trajectory 

represent the speedup, when sensors do not "see" an 

obstacle and the robot accelerates. In all experiments, 

we consider that the robot successfully attains the 

target point if its final position is into a horizontal 

interval [-8, +8] around the desired end point. 

In the every scenario, example (figures 4, 5), 

there is a critical situation with a surprise obstacle 

around the position y=100 in first case (figure 4). In 

this case, the robot must to take the decision of to 

move straight, pass between the two obstacles and 

immediately to turn left to avoid a frontal barrier and 

to attain the target point. By analyzing the results in 

figure 4a and 4b we note that the robot takes the 

correct decisions.  

 

 

Fig. 4. a) Fuzzy Classic Architecture; b) D-FCM Architecture with 

Hebbian Learning Algorithms  

In second case, one dynamic obstacle is in the 

scenario starting about in position (10, 83) and fin-

ishing about in position (3, 83), figure 4a and 4b 

show the correct decisions in all maneuvers. In both 

cases, the robot motion trend is to move straight to 

the end point, but an. the robot takes the correct deci-

sion to turn in order to avoid a collision but it also 

maintains the motion trend of follow a straight line.  

 

 
Fig. 5.  a)  Fuzzy Classic Architecture; b) D-FCM Architecture 

with hebbian Learning Algorithms 

 

5 Conclusion 

 

This paper developed an autonomous navigation 

system based on a new type of fuzzy cognitive maps, 

named dynamic fuzzy cognitive map, D-FCM. The 

developed D-FCM approach adds new types of rela-

tionships and concepts into a classical FCM that 

allows modeling the human ability of to take deci-

sion in presence of random events. This approach is a 

contribution of this paper to the intelligent control 

Mobile Robot 

Dynamic  

Obstacle 

 Obstacles 



area. It is not restricted to navigation systems and can 

be applied to model intelligent system needing to 

take decision on line.  

In accordance with the results presented in this 

paper, we can conclude that the proposed D-FCM 

architecture constitutes a flexible and robust tool to 

navigation system able to process vagueness and 

uncertainty in environment. One of the main ad-

vantages of the proposed approach is that the 

knowledge acquisition and representation is simpli-

fied by the use of FCM models. Moreover the result-

ing fuzzy cognitive maps are also easy to implement 

and run. Thus, it is easily embedded in a hardware 

robot.  

Some future works include implementing addi-

tional functionality into the navigation system, for 

example, cooperative dates between others agents. 

And finally, add algorithms, for example, reinforce-

ment learning, for the dynamic adjustment of the 

causal relations of D-FCM.  
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