
USING A REAL-TIME OPERATIONAL SYSTEM TO EMBED A KINEMATIC
CONTROLLER IN AN OMNIDIRECTIONAL MOBILE ROBOT

Diego Stéfano F. Ferreira∗, Cristiane C. Paim∗, Augusto Loureiro da Costa∗

∗Robotics Laboratory,
Postgraduate Program in Electrical Engineering

Federal University of Bahia, 40210-630 Salvador, Bahia, Brazil

Emails: diego.stefano@gmail.com, cpaim@ufba.br, augusto.loureiro@ufba.br

Abstract— In this paper, a kinematic controller is designed and embedded on a omnidirectional robot. The
robot has several sensors from which it has to acquire data, and then a real-time operational system was used
to accomplish concurrency requirements. The robot hardware has a microcontrollers network, but only one
of the nodes is used for the purposes of this paper, the PSoC 5LP, based on an ARM Cortex-M3 processor.
The embedded software is described in terms of the tasks implemented and their scheduling by the real-time
operational system. Practical results obtained from tests using the described system are presented.

Keywords— Embedded control systems, real-time operational systems, omnidirectional mobile robotics, kine-
matic control, task scheduling.

1 Introduction

A mobile robot embedded software, in order to
allow successful performance of the robot, must
cope with various kinds of activities, such as con-
trol of the robot actuators, processing of sensor
readings and communication. These activities are
time-critical and should be performed ideally at
the same time. But due to computational lim-
itations, this perfect parallelism is almost never
achieved in real world applications. The control of
the robot’s movement should, thus, be developed
with these computational restrictions in mind.

This work deals with the implementation of a
kinematic controller for an omnidirectional robot,
which must also perform sensor readings concur-
rently. The first section will describe the robot
used in the experiment, followed by a section that
describes its kinematic model. Then the kinematic
controller is described, and in the next section the
behavior of the embedded software with the real-
time operational system is described. Some re-
sults of experiments are described, and finally the
conclusions drawn based on these results are pre-
sented.

2 The Omnidirectional Robot AxeBot

The kinematic controller described in this work
was embedded in the omnidirectional robot
AxéBot. It consists of three swedish wheels whose
axes are physically displaced 120o from each other.
The swedish wheels and a schematic representa-
tion of its disposition are illustrated in Fig. 2.

The actuators used are the Maxon A-max 6V
DC motors. They have a 16 counts-per-revolution
quadrature encoder and a 19:1 planetary geartrain
with ball bearings built in, with a 4mm output
shaft. To drive these motors, three 3A low-voltage
H-bridges from Acroname were used.

A network consisting of three microcontrollers
composes the computational nucleus of the Axe-
Bot. The three microcontrollers are:

• the DIL/NetPC 2486, from SSV Embed-
ded Systems, with a Vortex86SX 300MHz
processor and 64MB SDRAM;

• the mbed, based on the microcontroller NXP
LPC1768 which, in turn, is based on an ARM
Cortex-M3 processor; and

• the Cypress Semiconductors’ PSoC 5LP,
also based on an ARM Cortex-M3 core.

The network is heterogenous in the sense that
it uses two different communication protocols be-
tween its nodes: a CAN (Controller Area Net-
work) network connects mbed and PSoC, and an
Ethernet network connects mbed and DNP 2486
(Figure 1). The network was so designed for the
embedding of the concurrent autonomous agent
described in (da Costa and Bittencourt, 1999).

Figure 1: AxeBot’s Microcontrollers Network.

The Cypress Programmable System-on-Chip
(PSoC) 5LP is the computational unit of the
AxeBot robot where the kinematic controller de-
scribed in this paper was embedded. The main
features of the PSoC 5LP, as exposed by (Fosler,
2012), are summarized in Table 1.

The AxeBot is also equipped with eight Sharp
GP2D02 infrared distance sensor, one Dimension



Table 1: PSoC 5LP main features

Feature PSoC 5LP

Core
ARM Cortex-M3
1.25 DMIPS/MHz

Flash 256KB
SRAM 64KB
EEPROM 2KB

Engineering DE-ACCM5g two axis accelerometer
and one Devantech CMPS03 Magnetic Compass
Module. The GP2D02 uses a two-wire digital
synchronous interface method to communicate its
readings, the DE-ACCM5g uses two analog chan-
nels (one for each axis) and the CMPS03 uses a
I2C interface.

3 Kinematic Model

The kinematic model for the AxéBot was devel-
oped based on the coordinate systems shown in
Fig. 2.

Figure 2: Coordinate systems for kinematic mod-
elling.

For a complete derivation of the AxeBot’s
kinematic model, one should refer to (Bitencourt
et al., 2008). Here only the final expression of the
model is presented: in Equation (1) the matrix od
the kinematic model is shown and then used in
Equation (2) to form the complete model.

P (θ) =

−
2 cos θ

3

√
3 cos θ−3 sin θ

3
√
3

√
3 cos θ+3 sin θ

3
√
3

− 2 sin θ
3

√
3 sin θ+3 cos θ

3
√
3

√
3 sin θ−3 cos θ

3
√
3

1
3 l

1
3 l

1
3 l


(1)

vxIvyI
θ̇

 = P (θ)

φ̇1xφ̇2x
φ̇3x

 . (2)

In Equation (2), vxI , vxI and θ̇ represents,
respectively, the velocities in x and y directions
and the angular velocity of the robot’s center of
mass in the SI coordinate system, φ̇ix represents
the angular velocity of the wheel i relative to the
x axis of the SCi coordinate system, and R is the
radius of the wheels.

4 Kinematic Position Controller

Once one has the kinematic model of the robot
it is possible to use this model to design a con-
troller to the robot that will allow it to stabilize
on some given position or follow some given tra-
jectory. This controller is the kinematic position
controller, and the mentioned variants leads to its
two types: a point-to-point controller and a tra-
jectory tracking controller.

4.1 Point-to-Point Kinematic Controller

The input to the controller in this case is the de-
sired (set-point) position. It then calculates the
difference vector between the desired or reference
position (xRI , yRI and θR), and the actual position
of the center of the robot (xI , yI and θ), which is
the error vector given in Equation (3).

e(t) =

xRIyRI
θR

−

xI(t)yI(t)
θ(t)

 (3)

This error vector is used to calculate a
Proportional-Integral (PI) control law. For point
stabilization control, according to (Tsai et al.,
2005), the control law is given by Equation (4),
where KP and KI are symmetric and positive def-
inite 3x3 matrices.

u(t) = KP e(t) +KI

t∫
0

e(τ) dτ (4)

4.2 Trajectory Tracking Kinematic Controller

For the trajectory tracking control, the reference
vector pT (t) =

[
xRI (t) yRI (t) θR(t)

]
is now de-

pendent of time and describes the parameterized
expression of the reference trajectory.

e(t) = p(t) −

xI(t)yI(t)
θ(t)

 =

xRI (t)
yRI (t)
θR(t)

−

xI(t)yI(t)
θ(t)

 (5)



The control law is modified by adding de
derivative of the reference vector, as it is shown
in Equation (6).

u(t) = KP e(t) +KI

t∫
0

e(τ) dτ + ṗ(t) (6)

The control action vector is then applied in
the (2) of the kinematic model in order to obtain
the wheels desired velocities through Equation (7).

φ̇1xφ̇2x
φ̇3x

 =
1

R
P−1(θ)u(t). (7)

4.3 Low level controllers

The wheels velocities just obtained with Equa-
tion (7), in turn, corresponds to the set-points of
another controller, but in a lower level. This is
the actuators control: the velocities of the wheels
must be adjusted to the given value in order to
correct the position error. Thus, the low level con-
trol deals with the velocity control of the motors.
This control was described and successfully imple-
mented for AxeBot’s actuators in (Ribeiro, 2010)
and (Ribeiro et al., 2011), and this work will use
those results, in which a PI controller was applied.

Now, with the help of the motors’ encoders,
the actual velocity of the wheels are read and
applied back in Equation (2) to obtain, by inte-
gration of the result, the new actual position of
the robot’s center of mass in the global reference
frame. These, in turn, are used to compute a new
error vector and continue the loop.

The kinematic controller consists, thus, of two
loops: one external or high-level loop, in which
the kinematic relationships are calculated, and a
internal or low-level loop, responsible for the con-
trol of the actuators, as shown in Figure 3.

5 Embedding the Kinematic Controller

In the previous section the kinematic controller
was described, and now this section will deal with
the software architecture requirements for the ad-
equate embedding of such a controller.

As was said before, the AxeBot omnidirec-
tional robot computational unit should accom-
plish a series of tasks in order to perform properly.
It has to:

• acquire from the distance sensor, which
requires, at each reading, sending a logic low-
level during 70ms to the sensor, followed by
a pulse train of total length not greater than
10ms to obtain at each pulse falling edge one
of the eight bits of the distance reading;

• acquire from the accelerometer, which
requires a analog to digital conversion at each
reading;

• acquire from the magnetic compass
through I2C communication;

• send data through UART to a com-
puter in order to supervise the system;

• perform kinematic control, which is made
in a cycle (loop) with a fixed period TC ; and

• perform motors velocity control using a
control loop with a period of TM ≤ TC .

An illustration of the overall system and its
components is given in Figure 4.

Figure 4: Illustration of the overall system.

In this context, multitasking is an indispens-
able requirement, and a Real-Time Operating Sys-
tem (RTOS) may fulfill it, since it is capable of
managing multiple tasks through a synchroniza-
tion mechanism involving task prioritization and
scheduling, providing an abstraction layer in the
software design (Stankovic and Rajkumar, 2004).

The RTOS used in this work was the FreeR-
TOS which, as the name suggests, is free and has
a porting for the PSoC 5LP. Besides, it is written
in the C programming language, the same used
by PSoC Creator, the IDE for PSoC 5LP devel-
opment.

In the FreeRTOS the tasks may be in one
of four states: running, in which it is executing;
blocked, in which it is not able to run until some
event occurs; ready, in which it is not executing,
but is able to; and suspended, in which it is not
running and it is not able to run. The correspond-
ing state transitions diagram is shown in Figure 5.
All tasks are created in the ready state, and the
task scheduler decides whether or not it can be
in the running state based on its priority: if some
higher priority task is already running, the task in



Figure 3: Block Diagram of the controller.

the ready state waits until it gets blocked or sus-
pended; if the running task has a lower priority
than the task in the ready state, then the former
is preempted by the last (Barry, 2010).

Figure 5: FreeRTOS tasks state diagram.

The tasks created for the AxeBot are shown
in Table 2. In terms of the controller, the priori-
ties were set in order to allow the loops to perform
correctly, i. e., the priority of the kinematic con-
troller task should be higher than the priority of
the motor control task, in such a way that after
each iteration of the kinematic controller it blocks
and allows the motor controller to perform its loop
TC

TM
times. After a time interval of TC the kine-

matic controller preempts it and execute one new
iteration.

Table 2: Tasks implemented.

Task Priority
Kinematic Control 3
Motor Control 2
Compass Acquisition 1
Distance Sensor Acquisition 3
Accelerometer Acquisition 1

The timing of both the control loops were pro-
vided by timers interrupts from PSoC and the
synchronization with the corresponding tasks was
achieved through the use of semaphores (Barry,
2010; Stankovic and Rajkumar, 2004). After every
TC period the kinematic controller task receives a
semaphore from the corresponding timer interrupt
and preempts any other task that is in the run-
ning state. It then executes its code and goes to
the blocked state waiting for the semaphore from
TC timer interrupt. The same occurs with the
motor control task and the TM timer. But the ex-

ecution time of these iterations are generally less
than both TC and TM . Then the remaining time
is took by the remaining tasks.

For the distance sensor, it is made with a pri-
ority as high as the kinematic controller because
when it is called first it just sends the digital ”0”to
the sensor input and then block for 70ms (more
than enough for the other tasks to execute) but
when this time is up, the task must execute im-
mediately, obeying the synchronous restrictions of
the sensor, to acquire to sensor reading, which
takes about 3ms. Then the other sensors acquire
within the aforementioned 70ms in between the
iterations of the controllers.

6 Results

The kinematic controller was implemented with
TC = 50ms and TM = 10ms. It means that
after each iteration the low-level controllers will
perform at most five iterations, which is enough
for it to stabilize (Ribeiro et al., 2011; Ribeiro,
2010; Santos, 2010). These controllers are dis-
crete PI controllers, with proportional and inte-
gral constants equal to kp = 0.239 and ki = 0.051,
respectively (Ribeiro et al., 2011; Ribeiro, 2010).

For the high-level controller, the matrices KP

and KI are given by KP = 3 I[3x3] and KI =
0.002 I[3x3], where I[3x3] is the 3x3 identity matrix
(Tsai et al., 2005).

In Figure 6 the scheduling of the tasks, ac-
cording to Table 2 and the previously described,
is illustrated.

Two tests were performed: one for point sta-
bilization control and another for trajectory track-
ing control.

6.1 Point Stabilization

As was said before, in point stabilization a
reference or desired pose is given as input to
the controller and the robot must stabilize in
that pose. The results are shown in Figure 7

for a desired pose given by
[
xRI yRI θRI

]T
=[

2m 3m 4 rad
]T

.

6.2 Trajectory Tracking

In the trajectory control problem, the reference is
now dynamic. The reference chosen for this test
was a circular trajectory with a 2m radius, whose
points were generated internally by the kinematic



Figure 6: Illustration of the task scheduling.

Figure 7: Results for point stabilization.

controller task through the parametric equation of
the circle, the orientation was fixed in π/2 rad and
the angular velocity of the reference trajectory is
ωR = 0.2 rads . The parametric equations to gener-

ator the desired trajectory are given in Equation
8. The results are shown in Figure 8.

xRI (t)
yRI (t)
θRI (t)

 =

2 cos (θRI (t) + ωR t)
2 cos (θRI (t) + ωR t)

π/2

 (8)

7 Conclusion

In this paper a RTOS was applied to embed a kine-
matic controller in omnidirectional mobile robot
AxeBot, equipped with various different sensors.
The sensors required processor time to be read,
and then the implemented software made use of
the prioritizing and semaphores mechanisms from
the RTOS to allow for a synchronized processor
time use, without compromise any of the tasks
that the robot should perform.

The tests results of the kinematic controller
were satisfactory, in the sense that the errors were
small, and the robot was still able to perform sens-
ing activities.

Acknowledgements

Authors acknowledge the support of CAPES (Co-
ordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior).

References

Barry, R. (2010). Using the FreeRTOS(tm) Real
Time Kernel, Real Time Engineers Ltd.

Bitencourt, A. C. P., da C. e S. Franco, A.,
de Souza, M. E., de O. Fontes, C. H. and
da Costa, A. C. P. L. (2008). Internal model
control for trajectory tracking of an omni-
directional robot, 3: 363–372.

da Costa, A. C. P. L. and Bittencourt, G.
(1999). From a concurrent architecture to
a concurrent autonomous agents architecture,
Springer.

Fosler, R. M. (2012). An77759 - getting started
with psoc R© 5lp.

Ribeiro, T. T. (2010). Sistema de controle em
tempo real aplicado à robótica móvel. Tra-
balho final de graduação.



Figure 8: Results for trajectory tracking.

Ribeiro, T. T., dos Santos, J. T., Conceição, A.
G. S. and da Costa, A. L. (2011). Sistema mi-
croprocessado para controle em tempo real de
robôs móveis ominidrecionais, X SBAI Sim-
pósio Brasileiro de Automação Inteligente.

Santos, J. T. (2010). Projeto e desenvolvimento
de um sistema microprocessado aplicado à
robótica móvel. Trabalho final de graduação.

Stankovic, J. A. and Rajkumar, A. (2004). Real-
Time Operating Systems, Vol. 28, Kluwer
Academic Publishers.

Tsai, C.-C., Jiang, L.-B., Wang, T.-Y. and Wang,
T.-S. (2005). Kinematics control of an omni-
directional mobile robot, Proceedings of 2005
CACS Automatic Control Conference.


