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Abstract— Three-phase induction motors fault analysis has shown a large growth in the last years, specially
bearing faults, which represent a large part of the total faults in this type of motor. In this work we use a
signal simulator, that permits the adjustment of the main parameters of the generated signals, such as sampling
frequency, number of points, and noise level. Also, it is possible to generate signals with localized and generalized
failures from the characteristic frequencies of each type of failure and the parameters of the bearings geometry.
This work presents a proposal of application of artificial neural networks for the detection of bearing failures using
a set of predictability measures based on relative entropy and Bhattacharyya distance of the simulated signals.
These measures are obtained from wavelet-packet decomposition components. With this method we obtained
classification performances close to 100% with the radial basis function network topology. This research aims at
the acquisition of knowledge for next works using real motor signals.
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Resumo— Nos últimos anos, a análise de falhas em motores de indução trifásicos têm apresentado grande
crescimento, especialmente falhas em rolamentos, que representam grande parte do total de falhas existentes
nesse tipo de motor. Neste trabalho utiliza-se um simulador de sinais, no qual é posśıvel ajustar os principais
parâmetros dos sinais gerados, como frequência de amostragem número de pontos e ńıvel de rúıdo. No simulador,
e posśıvel gerar sinais com falhas localizadas e distribúıdas a partir das frequências caracteŕısticas de cada tipo de
falha e dos parâmetros referentes à geometria dos rolamentos estudados. Este trabalho apresenta uma proposta
de aplicação de redes neurais artificiais em um conjunto de medidas de previsibilidade baseados em entropia
relativa e distância de Bhattacharyya de sinais simulados, a partir de componentes da transformada wavelet-
packet, detecção de falhas em rolamentos. Os resultados obtidos apresentam taxa de acerto de 100% com a
rede RBF na classificação dos sinais analisados. Tal pesquisa inicial visa obtenção de experiência para futura
implementação com sinais reais.

Palavras-chave— Reconhecimento de padrões, falhas de rolamentos, wavelets, redes neurais.

1 Introduction

Three-phase induction motors are heavily present
in most industries and can be found in various
applications such as fans, compressors, tracks and
pumps. Although they are robust machines, fac-
tors such as adverse environmental conditions, im-
proper operation and design errors can cause the
emergence of various faults in its components, pre-
dominantly failures related to the machine stator,
the rotor, and the bearings.

Recent researches show that failures related
to bearings represent 40% to 60% of total failures
(Zhang et al., 2011; Zhou et al., 2007). These
failures are divided into two types: (1) localized
failures, in which the defects occur in specific ele-
ments of the bearings (races, balls, or cage), and
(2) generalized failures, in which the bearings are
damaged as a whole.

Monitoring the conditions of a three-phase in-
duction motor allows the prediction of failures,
enabling the application of corrective actions and
reducing losses due to unplanned stops. Bearing
analysis is commonly performed on vibration sig-
nals, acoustic emissions, or stator current signals
(Zhou et al., 2007).

The analysis of vibration signals demands

high cost equipments and contact with the en-
gine is necessary in order to perform the acqui-
sitions, therefore it is an invasive technique (Zhou
et al., 2007). On the other hand, analysis of stator
current signals requires relatively low cost instru-
mentation and allows remote monitoring. Trajin
et al. (2010) presents a comparative study between
techniques involving vibration signals and current
signals to detect localized bearing faults.

Various signal processing techniques can be
applied to detect bearing failure using stator cur-
rent signals, as shown in Blodt et al. (2004), whom
performed spectral analyzes using FFT. Also, in
Silva and Cardoso (2005), the authors used Park’s
vector approach and FFT of signals with localized
failures in the bearing races.

Spectral analysis of FFT is more suitable
for steady state signal analysis. For transient
applications, the use of techniques in the time-
frequency domain is preferred, as the Short Time
Fourier Transform (STFT) and the wavelet trans-
form (Zhou et al., 2007).

The use of wavelet transform in fault detec-
tion in three-phase induction motors has grown in
recent years. Examples are Gong and Qiao (2011),
in which energy measures from wavelet transform
are used to detect generalized bearing failures, and



Eren and Devaney (2004), in which similar analy-
ses were performed on signals with failures on the
outer race.

Another approach is the use of information
theory measures, as in Seryasat et al. (2010), in
which measures of entropy and wavelet coefficients
energy of vibration signals of bearings with faults
in the balls.

A common choice to classify caracteristic
measures of stator current signals is the artificial
neural networks (ANN), as in Eren et al. (2004).
In this paper, networks with the topologies mul-
tilayer perceptron (MLP) and radial basis func-
tions (RBF) were used to analyze energy measures
from different frequency bands of wavelet compo-
nents. Vibration signals can also be classified us-
ing ANNs, such as in Prieto et al. (2013), where
MLP and RBF networks were also used. Another
topology for failure detection is the self-organizing
maps, that also have the ability to monitor the
evolution of the failures (Hu et al., 2011).

This paper presents a methodology for detec-
tion of localized failures in bearings using pre-
dictability measures of wavelet components and
classification with ANNs in groups with and with-
out failures. The analyzed signals were obtained
using a signal simulator with bearing failures.
This research presents the evaluation of the effi-
ciency of the proposed method for future analysis
of real signals.

In the next section, Theory, we present the
main theoretical concepts of this research, fol-
lowed by Methodology, in which we present the
simulator and the analysis technique. In Results
and Discussions, we present the performance of
the ANNs, and, lastly, in Conclusions, we present
the final considerations.

2 Theory

A bearing with a localized failure in some of its
elements causes vibrations in the machine axis,
and variations in the flow of the airgap, which
reflects in the stator current, producing harmonics
related to the vibration frequencies of each type
of failure (Blodt et al., 2004; Devaney and Eren,
2004).

Mechanical pulsing vibration caused by faults
can have its frequencies calculated through bear-
ing geometry parameters and the machine axis
velocity of rotation (Devaney and Eren, 2004).
Vibration frequencies related to the inner race
(fpi) and outer race (fpe) faults are given by the
Equations (1) and (2) respectively (Devaney and
Eren, 2004).

fpi =
n

2
.fr.

(
1 +

BD

PD
. cosφ

)
(1)

fpe =
n

2
.fr.

(
1− BD

PD
. cosφ

)
(2)

The machine rotation velocity is fr, n is the
number of balls, BD is the balls diameter, PD
is the race diameter and φ is the contact an-
gle of the balls. The characteristic fault frequen-
cies (fb), reflected in the signals current spectrum
are calculated by the Equation (3) (Devaney and
Eren, 2004).

fb = |fe ±m.fv| (3)

The source frequency is fe, m is an integer and fv
is one of the characteristic vibration frequenciees
defined by (1) or (2).

2.1 Wavelet-Packet Decomposition

The wavelet transform generates a signal rep-
resentation from shifted and scaled versions of
the wavelet function (ψ) and scale function (φ)
(Mallat, 1989). It differs from the Fourier trans-
form that only decomposes signals into sums of
sinusoids.

Specifically, the discrete wavelet transform
(DWT) can be understood as a process of discrete
filtering using a bank of perfect reconstruction fil-
ters (Mallat, 1989). In the wavelet transform de-
composition, the signal is divided into approxima-
tion and detail coefficients, referring to the low
and high frequencies signal components respec-
tively. One practical way to compute the DWT
of a signal x[n] is described in Guido et al. (2006)
using Equations (4) and (5), where g0 and h0 are
the low-pass and high-pass decomposition filters
and N is the signal size.

A[n] = x[n] ∗ g0[n] =

N−1∑
k=0

g0[k].x[2n− k] (4)

D[n] = x[n] ∗ h0[n] =

N−1∑
k=0

h0[k].x[2n− k] (5)

The multiresolution analysis is obtained by
successively decomposing the aproximation co-
eficients using the same filter bank. On the
other hand, in the wavelet-packet decomposition
(WPD), both components (aproximation and de-
tail) are decomposed, creating a full decomposi-
tion tree, as shown in Figure 1.

2.2 Predictability Measures

One method of assessing the signal predictability
is by the difference between two probability den-
sity functions (PDF), where one is formed with
current data and other is formed with predictions
(Scalassara et al., 2009).

In this research, we used the WPD to obtain
the predictions of the signals, evaluating their pre-
dictability using relative entropy and the Bhat-
tacharyya distance (Cover and Thomas, 2006;
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Figure 1: Wavelet-packet decomposition.

Kailath, 1967), Equations (6) and (7) respectively.
These measures are estimated using the PDF px of
the original signal x[n] and the PDF pe of the pre-
diction error e[n], C is the number of cells of the
histogram. The PDFs were estimated using con-
stant quantization step Scalassara et al. (2011).

Dpx||pe
=

C∑
i=1

px(i). log2

px(i)

pe(i)
(6)

dB(px : pe) =

√√√√1−
C∑
i=1

√
px(i).pe(i) (7)

2.3 Artificial Neural Networks

ANNs are adaptive systems based on the oper-
ations performed by the biologic neurons, which
are able to learn about the system under in study
using experimental data. They are commonly
used for function approximation, pattern classi-
fication and clustering, and system identification
and otimization (Haykin, 1999).

For bearing fault analysis, the most widely
used network topologies are the MLP and RBF,
Figure 2 (Prieto et al., 2013; Eren et al., 2004;
Hu et al., 2011). Therefore, in this research, we
used these two topologies to classify signals in two
groups: with and without the presence of bearing
failures.
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Figure 2: RBF neural network.

3 Methodology

In this section, we present the proposed method-
ology, that is composed by the determination of
the regions of interest, extraction of the charac-
teristics, and classification using ANNs.

3.1 Signal Simulator

In order to perform the initial tests with motor
signals, as well as to correct possible errors in the
algorithms, we developed a signal simulator of sta-
tor current similar to the one presented in McIn-
erny and Dai (2003). It is possible to simulate
signals with localized and generalized failures, and
also control the main parameters of the signals. A
screenshot of the graphical user interface (GUI) of
the simulator is shown in Figure 3.

This simulator outputs three-phase currents
and it is based on real signals from a motor with
1 HP and 4 poles, operating with various torque
ranges. The simulated faults are in bearings 6204
and 6203. More details about these signals can be
found in Santos et al. (2012).

Initialy, for the simulator usage, one must se-
lect the type of fault and its amplitude range (a
percentage of the signal normalized amplitude).
After that, the bearing geometry parameters must
be set.

Then, the main parameters of the signals must
be defined, such as sampling frequency, torque ap-
plied to the machine axis, noise level to be added
to the signals, number of points, number of har-
monics of the fault frequencies, and number of sig-
nals. The amplitude range is randomly applied to
the signal and it decreases at a rate of 80% for
each failure harmonic, as discussed in Silva and
Cardoso (2005) and Devaney and Eren (2004).

After the signal generation, a preview of this
signal is displayed along with its frequency spec-
trum. Then, it is possible to assign an identifica-
tion and save the group of signals.

In this research, we created groups of normal
signals and with inner and outer race failures, in
an amount of four groups with five values of torque
each, accounting for 180 signals. The amplitude
of the failure components range from 2% to 5% of
the normalized signals amplitude, aiming to char-
acterize early stages of the faults.

3.2 Feature Vector

The regions of interest of the frequency spectrum
of the analyzed signals were represented by the
WPD components. We considered a number of
fault harmonics m = 4, generating a great num-
ber of characteristic fault frequencies. In order to
select these components we used a histogram of
fault frequencies, as shown in Figure 4.

For the eight levels of the WPD, we selected
from the histogram the first two components in



Figure 3: GUI of the bearing fault simulator.
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Figure 4: Histogram of bearing faults frequencies.

which there were more events of frequency faults,
the components C16 and C26. These compo-
nents were chosen due to their higher probability
of changes in case of failures.

Using the selected components, we defined the
feature vector given by Equation (8), composed of
the relative entropy and Bhattacharyya distance
between the original signals and the prediction er-
rors using the recontructed WPD signals using
the C16 and C26 components respectively. The
predictability measures were obtained using the
Daubechies wavelet family with filter order of 80
and the histograms were estimated with ampli-
tude quantization step of 0.004.

[D(C16) dB (C16) D(C26) dB(C26)] (8)

The feature vector of Equation (8) was used
as the set of inputs to ANNs. The details of the
ANNs topologies are presented in Table 1. Con-
sidering the 180 original signals, 129 were used to
train the neural networks and 51 to validate them.

Table 1: Characteristics of the ANNs.
Type Network 1 Network 2 Network 3

Architecture MLP RBF RBF
Training S US+S US+S

Number of
Hidden 1 1 1
Layers
Neurons
Hidden 15 8 10
Layer

Neurons
Output 2 2 2
Layer

Training
BP

k-means k-means
Algorithm BP BP
Activation

Logistic Gaussian Gaussian
Function
Hidden
Layer

Activation

Logistic Logistic Linear
Function
Output
Layer

(S) Supervised
(US) Unsupervised

(BP) Backpropagation

4 Results and Discussions

The predictability measures of the groups of ana-
lyzed signals were similar, however, it was possible
to separate them using the proposed ANNs. Ta-
ble 2 presents the classification performance of the
topologies studied.

Table 2: Classification Results.
Number

Accuracy
Classification

of Epochs Performance

Network 1 5141 10−7 76.47%

Network 2 204 10−7 98.04%

Network 3 436 10−10 100%

The relative entropy and Bhattacharyya dis-
tance measures were higher for the signals without



failures, representing the largest predictability of
these signals. A higher prediction error is related
to more similar PDFs of the signal and its predic-
tion error, therefore, lower values of the estimated
measures. Due to the presence of components re-
lated to the failures frequencies, the signals with
faults were more unpredictable.

From Table 2, we notice a better performance
of the RBF network when comparing to the MLP
network, considering both the number of epochs
and the classification performance.

5 Conclusions

In this research, we proposed the use of a method-
ology to detect localized bearing failures of three-
phase induction motors from simulated current
signals. The detection was based on the variation
of the predictability measures between the orig-
inal signals and the predictions performed from
wavelet-packet transform components.

The signals analyzed in this paper, of bear-
ings without failures, and with inner and outer
race failures were created by a signal simulator.
This simulator aimed at the realization of several
tests with the possibility of diversifying the main
parameters of the signals. The use of the sim-
ulator resulted in the achievement of knowledge
necessary to apply the proposed analysis method
to real signals.

Based on the obtained results, we noticed that
the characteristic fault frequencies caused changes
in the predictability measures in the interest re-
gions in some WPD components. Thus, justifying
the use of the proposed analysis method in real
signals with faults emulated manually in the mo-
tor bearings.

Due to various parameters involved in the
characteristic extraction, as the wavelets family,
quantization step of the histograms, decomposi-
tion level and the criteria for choosing the compo-
nents, this stage of this research must be refined
to obtain best results of signals classification in
groups with or without the presence of failures.

For future works, we are going to apply the
method in real signals with localized failures em-
ulated in the races, as well as the extension of this
research to failures in the balls, in the cage, and
generalized failures.
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