
GENETIC ALGORITHM-BASED NAVIGATION STRATEGY FOR MOBILE
TERRESTRIAL ROBOTS

Átila V. F. M. de Oliveira∗, Marcelo A. C. Fernandes∗

∗Department of Computer Engineering and Automation – DCA
Federal University of Rio Grande do Norte – UFRN

Natal, RN, Brazil

Emails: avfmo.engcomp@gmail.com, mfernandes@dca.ufrn.br

Abstract— This article proposes a new dynamic planning navigation strategy for use with mobile terrestrial
robots. The strategy was applied to situations in which the environment and obstacles were unknown. After
each displacement event, the robot replanned its route using a control algorithm that minimized the distance to
the target and maximized the distance between the obstacles. Using a spatial localization sensor and a set of
distance sensors, the proposed navigation strategy was able to dynamically plan optimum routes that were free
of collisions. Simulations performed using different types of environment demonstrated that the technique offers
a high degree of flexibility and robustness, and validated its potential use in real applications involving mobile
terrestrial robots.

Keywords— Genetic Algorithms, Mobile Robots, Atonomous Navigation.

1 Introduction

The evolution of robotics research in the last fif-
teen years has had an important influence on hu-
man activities in many sectors of society. In
the case of mobile robotics, the main objective
is to develop autonomous intelligent robots that
are able to effectively plan their movements in
static or dynamic environments that are unknown
(Siegwart et al., 2011).

Methods involving Artificial Intelligence (AI)
are amongst the techniques that can be used for
this purpose, and there have been several reports
of new navigation strategies showing a high level
of precision in terms of avoidance of obstacles
and achievement of optimum routes. In the area
of AI, many navigation techniques employ fuzzy
logic, artificial neural networks (ANNs), genetic
algorithms (GAs), or combinations of these pro-
cedures (Martinez-Soto et al., 2012) (Juang and
Chang, 2011). Techniques based on GAs have
been widely used due to their robustness, and
in most cases have been able to provide opti-
mum routes in both static and dynamic environ-
ments (Ismail AL-Taharwa and Al-Weshah, 2008)
(Yang et al., 2007) (Yun et al., 2011) (Shi and
Cui, 2010) (Shamsinejad et al., 2010) (Tian and
Collins, 2004) (Tuncer and Yildirim, 2012) (Cośıo
and neda, 2004).

This work proposes a new dynamic planning
navigation strategy based on a genetic algorithm,
called the Dynamic Planning Navigation Algo-
rithm optimized with GA (DPNA-GA). The ob-
jective of this strategy was to be able to identify
an optimum collision-free route to a spatially de-
fined objective. The DPNA-GA employs a set of
distance sensors and a spatial localization sensor
in order to reach the objective, without any a pri-
ori knowledge of the environment.

2 Description of the Navigation Strategy

It was assumed that the robot possesses a lo-
calization sensor that returns its spatial posi-
tion, pR =

(
xR, yR

)
, and a set of n evenly dis-

tributed distance sensors. The navigation strat-
egy based on the DPNA-GA generates a route
composed of M local displacements in order to
reach the final objective, pfo =

(
xfo, yfo

)
. In

each m-th displacement event, there is a local
objective,pol(m) =

(
xol(m), yol(m)

)
, to which the

robot moves.
The selection of the local objective, pol(m), in

each m-th event, is performed by a GA that uses
the current position of the robot, pR(m), taking
into consideration the distance to the final objec-
tive, pfo, and the obstacles detected by the n dis-
tance sensors. All the positions pR(m) already
visited by the robot up to the m-th displacement
are stored in vector centers, pR, expressed by

pR =


pR(0)
pR(1)

...
pR(m− 1)
pR(m)

 (1)

=



(
xR(0), yR(0)

)(
xR(1), yR(1)

)
...(

xR(m− 1), yR(m− 1)
)(

xR(m), yR(m)
)


and are also used in the GA optimization function,
avoiding searches in areas that have already been
investigated.

The algorithm terminates when the current
position of the robot is the same as the final ob-
jective, with pR(m) =

(
pfo ± ε

)
, where ε is a tol-

erance factor, or when the number of displacement

events exceeds a maximum value, Mmax. The
steps processed by the DPNA-GA are presented
in Algorithm 1, and are described in detail in the
following sections.

Algorithm 1 ANPD-AG

1: m = 0
2: pR =

[
pR(0)

]
3: while pR(m) 6=

(
pfo ± ε

)
E m < Mmax do

4: pDP (m) = Scanning
5: pO(m) = ObstaclesDetection

(
pDP (m)

)
6: plo(m) = SearchLocalObjective

(
pO(m) ,

pDP (m),pR
)

7: pR(m+ 1) = Displacement
(
pol(m)

)
8: pR =

[
pR, pR(m+ 1)

]T
9: m = m+ 1

10: end while

2.1 Scanning

In the scanning step (line 4 of Algorithm 1), the
DPNA-GA forces the robot to perform a 360◦ scan
of the environment around its axis. From this
scan, each j-th sensor, during the m-th event, re-
turns an analog signal, sj(m), proportional to the
distance limit, dmax, in which

sj(m) =

 dj(m) for dj(m) ≤ dmax

dmax for dj(m) > dmax

(2)

where dj is the distance measured by the j-th sen-
sor attached to the robot.

The scanning resolution, θr, can be expressed
by

θr =
360◦

n · p
, (3)

where p− 1 represents the number of angular dis-
placements the robot can make in its axis, consid-
ering the reduced resolution due to a small number
of sensors. The number of displacements can be
easily calculated using

p =
360◦

n · α
, (4)

where α is the value of the angular displacement.
At the end of the scanning process, the DPNA-GA
generates a polygon, known here as a delimiting
polygon (DP), composed of a set of K points, ex-

pressed by the vector

pDP (m) =



pDP
0 (m)

...
pDP
k (m)

...
pDP
K−1(m)

 (5)

=



(
xDP
0 (m), yDP

0 (m)
)

...(
xDP
k (m), yDP

k (m)
)

...(
xDP
K−1(m), yDP

K−1(m)
)


where K = p× n and (xk, yk) represent the plane
coordinates of the k-th point associated with the
DP. This polygon is used to delimit the search
space of the genetic algorithm. In other words,
the individual points generated within the polygon
have greater value than points generated outside
it. Meanwhile, the ability of each individual point
is not only determined by whether or not it is
within the polygon. Also taken into account are
the distances between the point generated and the
obstacles detected by the scan, as well as other
factors. Figure 1 illustrates the polygon generated
by the DPNA-GA for a case where n = 4 and
α = 30◦.

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

Figure 1: Example of the delimiting polygon (blue
line) for a case where n = 4 and α = 30◦.

2.2 Detection of obstacles

Once the scanning stage is complete, the detection
of obstacles phase begins (line 5 of Algorithm 1),
in which a virtual polygon (VP) is generated in
addition to the delimiting polygon. The VP con-
siders a circumference centered on the robot (at
position pR), with a radius rPV that is slightly
shorter than the maximum range (dmax) of the

sensors. Then,

rPM = dmax(1− η), (6)

where the factor η is limited to 0, 9 ≤ η < 1.
The role of the VP is to detect only those points
of the DP that are associated with the obstacles,
denoted pO. Hence, after this step, a new set of L
points is generated, represented by the vector

pO(m) =



pO0 (m)
...

pOl (m)
...

pOL−1(m)

 (7)

=



(
xO0 (m), yO0 (m)

)
...(

xOl (m), yOl (m)
)

...(
xOL−1(m), yOL−1(m)

)

 ,

where

pOl (m) = pDP
k (m) se fed

(
pR(m), pDP

k (m)
)
≤ rPV ,

(8)
and L ≤ K. The function fed (·, ·), which cal-
culates the Euclidean distance between any two
points, can be described by

fed (pi, pb) =

√
(xi − xb)2 + (yi − yb)2. (9)

Figure 2 illustrates an example of the VP
(green circle) and the set of points pO (red as-
terisks).

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

Figure 2: Example for a case where η = .01, illus-
trating the VP (green line) and the set of detected
points (pO, red asterisks) that surround the ob-
stacles.

2.3 Search for the local objective

In this step, (line 6 of Algorithm 1), the proposed
navigation strategy uses a GA to find a possible
local objective, pol, to which the robot can move.
For each m-th displacement event, the GA, with
a new population, is executed for H generations.
The individuals are characterized by the vector

pGA(h,m) =



pGA
0 (h,m)

...
pGA
j (h,m)

...
pGA
J−1(h,m)

 (10)

=



(
xGA
0 (h,m), yGA

0 (h,m)
)

...(
xGA
j (h,m), yGA

j (h,m)
)

...(
xGA
J−1(h,m), yGA

J−1(h,m)
)

 ,

where pGA
j (h) represents the j-th individual of the

population with size J , associated with the h-th
generation of the m-th displacement of the robot.
In each generation, h, all the individual points are
generated according to the non-linear restriction
given by

rd ≥
(
xGA
j (h,m)− xR(m)

)2
+
(
yGA
j (h,m)− yR(m)

)2
. (11)

This restriction limits the individual points of the
population to a circumference with radius rd, cen-
tered on the position of the robot in the m-th in-
stant, pR(m).

The evaluation function associated with the
j-th individual point of the h-th generation of the
m-th displacement is expressed by

gj(h,m) = dfoj (h,m) + β(m)
1

doj(h,m)

+β(m)Aj(h,m)Cj(h,m) (12)

where dfoj (h,m) is the Euclidean distance between
the j-th point of the h-th generation and the final
objective, pfo, characterized as

dfoj (h,m) = fed
(
pGA
j (h,m), pfo

)
, (13)

where doj(h,m) is the shortest Euclidean distance
between the j-th point of the h-th generation and
all the L obstacles found, expressed as

doj(h,m) = min fed
(
pGA
j (h,m), pOl (m)

)
for l = 0, . . . , L− 1. (14)

The variables β(m), Cj(h,m) and Aj(h,m) can
be characterized as penalty factors added to each
j-th individual of the GA. When no obstacle is
found in the m-th displacement event (L = 0), it

is assumed that the optimum evaluation function
is simply dfoj (h,m), so that

β(m) =

 1 for L 6= 0

0 for L = 0
(15)

Starting from the principle that the circumfer-
ences with radius rd, centered in the center vector
pR, are areas that have already been visited, the
penalty factor, Cj(h,m), can be characterized as

Cj(h,m) =



1 if
@i ∈ {0, · · · ,m− 1} :
fed
(
pGA
j (h,m), pR(i)

)
< rd

Z if
∃i ∈ {0, · · · ,m− 1} :
fed
(
pGA
j (h,m), pR(i)

)
< rd,

(16)
where Z is a relatively large number. Hence, an
individual point pGA

j (h,m), located within one of
the m circumferences with radius rd, centered in
the center vector, pR, would be positively penal-
ized, reducing its chances of being selected. Fi-
nally, the penalty, Aj(h,m), refers to individual
points, pGA

j (h,m), located outside the DP, where

Aj(h,m) =

 1 if ∈ PD

∞ if /∈ PD.
(17)

Individual points that are subject to this penalty
will have minimal possibility of surviving until the
next generation. Figure 3 illustrates the calcula-
tion of the evaluation function for a j-th point
pGA
j (h,m).

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

 pfo

local objective chosen

Figure 3: Example illustrating calculation of the
evaluation function for a j-th individual point,
pGA
j (h,m), in relation to the final objective, pfo,

and the obstacles, pO.

The evaluation function presented in Equa-
tion 12 follows the same principle as the potential

fields technique (Siegwart et al., 2011), in which

dfoj (n,m) (the Euclidean distance between the j-

th point and the final objective, pfo) represents
a force of attraction to the final point. The term

1
do
j (n,m) (the shortest Euclidean distance between

the j-th individual point and all the points associ-
ated with obstacles) represents the greatest repul-
sive force between the j-th individual point and
all the obstacles found. After N generations, the
smallest evaluation point is chosen as the local
objective, plo(m), associated with the m-th dis-
placement event.

2.4 Displacement

The displacement step (line 7 of Algorithm 1) is
characterized by movement of the robot to the lo-
cal objective found in the previous step. After
this movement, a new center pointpR(m + 1) is
generated, described by

pR(m+ 1) 6=
(
plo(m)± ε

)
(18)

where ε is an admissible tolerance related to the
local objective. This tolerance can be most useful
in the case of robots that have restricted move-
ment, such as non-holonomic robots (Siegwart
et al., 2011). Figure 4 presents a sequence of
M = 6 displacements up to the final point, pfo.

−4 −2 0 2 4 6

−2

0

2

4

6

8

 b1

Figure 4: Example illustrating the displacements
(M = 6) made by the robot up to the final point,
pfo.

3 Results and Simulations

Simulations with different environments were used
to validate use of the DPNA-GA and compare
its performance with other procedures. The sim-
ulations were implemented in Matlab employing
an updated version of the iRobot Create toolbox

(Esposito et al., 2011), simulating a circular non-
holonomic robot with differential action, possess-
ing four distance sensors with 90◦ spacing. Table
1 presents the parameters utilized in the simula-
tions. The results are presented in Figures 5 – 9,
which show the routes followed by the robot (con-
tinuous black lines), the m displacement events
(circles on the route lines), and the DP associated
with each displacement (dashed blue lines).

Table 1: Parameters employed in the simulations.
Number of distance sensors (n) 4
Sensor range (dmax) 3 m
Angular displacement (α) 30◦

Number of generations (H) 30
Population size (J) 30
Radius (rd) 1 m
Z (equation 16) 1000

Figure 5 shows the displacement of the robot
in a moderately complex environment, where the
robot required M = 24 displacement events in or-
der to arrive at its destination. It can be seen that
in the first instance (0 ≤ m ≤ 10), the DPNA-GA
gave a sub-optimal route in which the robot was
strongly attracted to the target point. However,
for m > 11 the DPNA-GA provided an optimum
route to the destination.

−5 −4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

5

 b1

Figure 5: Displacement of the robot in a moder-
ately complex environment. In a route that was
close to the optimum, the robot required M = 24
displacement events.

For the scenario shown in Figure 6, the robot
was required to enter a type of U-shaped garage.
In this case, the DPNA-GA required approxi-
mately M = 18 displacement events and provided
the optimum path. In the case of the scenario
shown in Figure 7, the robot was faced with a sit-
uation opposite to that of the previous example,
in which it was required to leave a garage. Here,

the robot required M = 14 displacement events,
and once again followed the optimum route.

−6 −4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

 b1

Figure 6: Displacements required for the robot to
enter a U-shaped environment using an optimum
route (M = 18).

−6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

 b1

Figure 7: Displacements required for the robot to
leave a U-shaped environment using an optimum
route (M = 14).

The scenarios illustrated in Figures 8 and
9 show the performance of the navigation algo-
rithm in the case of open environments with ran-
domly scattered obstacles. Here, the robot fol-
lowed routes that were very close to optimum, re-
quiring M = 17 and M = 18 displacements, re-
spectively.

4 Conclusions

A new strategy based on a genetic algorithm was
developed in order to implement a dynamic plan-
ning navigation scheme for use with mobile terres-
trial robots that have no a priori knowledge of the

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

 b1

Figure 8: Displacement of the robot in an open
environment with randomly scattered obstacles.
In a route that was close to optimum, the robot
required M = 17 displacement events.

environment. The performance and robustness
of the technique, known as the Dynamic Plan-
ning Navigation Algorithm optimized with GA
(DPNA-GA) was evaluated using simulations rep-
resenting different environments. The results in-
dicated that the DPNA-GA should be suitable for
use in practical tests with terrestrial robots.

References

Cośıo, F. A. and neda, M. P. C. (2004). Au-
tonomous robot navigation using adaptive
potential fields, Mathematical and Computer
Modelling 40(9 - 10): 1141 – 1156.

Esposito, J. M., Barton, O. and Kohler, J.
(2011). Matlab toolbox for the irobot cre-
ate, www.usna.edu/ Users/ weapsys/ espos-
ito/ roomba.matlab/.

Ismail AL-Taharwa, A. S. and Al-Weshah, M.
(2008). A mobile robot path planning us-
ing genetic algorithm in static environment,
Journal of Computer Science 4(4): 341–344.

Juang, C.-F. and Chang, Y.-C. (2011).
Evolutionary-group-based particle-swarm-
optimized fuzzy controller with application
to mobile-robot navigation in unknown
environments, Fuzzy Systems, IEEE Trans-
actions on 19(2): 379–392.

Martinez-Soto, R., Castillo, O., Aguilar, L. and
Baruch, I. (2012). Bio-inspired optimization
of fuzzy logic controllers for autonomous mo-
bile robots, Fuzzy Information Processing So-
ciety (NAFIPS), 2012 Annual Meeting of the
North American, pp. 1–6.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

 b2

Figure 9: Displacement of the robot in an open
environment with randomly scattered round ob-
stacles. In a route that was close to optimum, the
robot required M = 18 displacement events.

Shamsinejad, P., Saraee, M. and Sheikholeslam,
F. (2010). A new path planner for au-
tonomous mobile robots based on genetic al-
gorithm, Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE Inter-
national Conference on, Vol. 8, pp. 115–120.

Shi, P. and Cui, Y. (2010). Dynamic path plan-
ning for mobile robot based on genetic algo-
rithm in unknown environment, Control and
Decision Conference (CCDC), 2010 Chinese,
pp. 4325–4329.

Siegwart, R., Nourbakhsh, I. and Scaramuzza, D.
(2011). Introduction to Autonomous Mobile
Robots, Intelligent Robotics and Autonomous
Agents, Mit Press.

Tian, L. and Collins, C. (2004). An effective robot
trajectory planning method using a genetic
algorithm, Mechatronics 14(5): 55 – 470.

Tuncer, A. and Yildirim, M. (2012). Dynamic
path planning of mobile robots with im-
proved genetic algorithm, Computers & Elec-
trical Engineering 38(6): 1564 – 1572.

Yang, S., Fu, W., Li, D. and Wang, W. (2007).
Research on application of genetic algorithm
for intelligent mobile robot navigation based
on dynamic approach, Automation and Lo-
gistics, 2007 IEEE International Conference
on, pp. 898–902.

Yun, S. C., Parasuraman, S. and Ganapathy, V.
(2011). Dynamic path planning algorithm in
mobile robot navigation, Industrial Electron-
ics and Applications (ISIEA), 2011 IEEE
Symposium on, pp. 364–369.

