
OBSTACLE AVOIDANCE FOR A ROBOT MANIPULATOR BASED ON VISUAL
FEEDBACK

Fernando J. Mendiburu∗, Marcos R.A. Morais∗, Antonio M.N. Lima∗

∗Graduate Program in Electrical Electrical Engineering - PPgEE
Department of Electrical Engineering - DEE

Universidade Federal de Campina Grande - UFCG
Rua Apŕıgio Veloso, 882, 58429-900 Bairro Universitário

Campina Grande, Paráıba, Brazil

Emails: fernando.mendiburu@ee.ufcg.edu.br, morais@dee.ufcg.edu.br,

amnlima@dee.ufcg.edu.br

Abstract— In this article a visual feedback control system and object occlusion handling implementation is
presented. The proposed system integrates a trajectory planning method into the controller of a five degrees of
freedom manipulator aiming to simplify object handling and obstacle avoidance. The system aims the intelligent
handling of several parts, generating obstacle free paths whenever possible. The workspace information is provided
by a redundant vision system: a RGB camera placed over the handler actuator and two fixed RGB-D sensors.

Keywords— Intelligent Automation, manipulator, path planning, RGB-D Sensors.

1 Introduction

The integration of a trajectory planner for a robotic

manipulator with a stereo vision system capable of

finding the obstacles pose and target objects it is very

important for the safe manipulation of objects. The

implementation of a robotic vision system is a theoret-

ical and practical challenging problem, and some com-

putational vision systems applications can be found in

literature (Mendiburu et al., 2013). The research is

relevant for social, academic and industrial aspects,

and the development of automated systems do im-

prove product quality, fosters mass production, and

also reduces time and cost of production. Quality im-

provement is provided by the high accuracy and re-

peatability of the robots. The use of handlers enables

the development of more efficient automation, leading

to increased reliability to the processes.

In the proposed system we use the Pegasus 880-

RA2-1-B as the manipulator robot. The redundant

vision system is composed an IR camera, namely IR-

Syntek STK1160, placed at the arm actuator, and

two RGB-D devices, Kinect sensors, statically posi-

tioned external to the manipulator and perpendicular

to each other to extend the platform field of view. The

workspace is shown in Fig. 1. It can be seen the vi-

sion system integrated to the robotic platform: the

RGB camera, the frontal and lateral RGB-D sensors.

The system is robust as an obstacle free trajectory can

be determined even when there are occlusions in the

workspace.

The automatic workspace determination with

computational vision only is a complex problem due to

variations in scene illumination. The use of a RGB-D

sensor as the Kinect simplifies the solution by cap-

turing the scene depth using an infrared pair (CMOS

camera/IR projector). The system shows robustness

to changes in illumination that could otherwise de-

grade its performance. The emerging of RGB-D sen-

Figure 1: Workspace including the robot and vi-
sion system.

sors like Kinect have promoted an evolution in vi-

sion systems due mainly to its low cost and remark-

able technical features (Rakprayoon et al., 2011) and

(Macknojia et al., 2013). After workspace determi-

nation, a path for task execution has to be estab-

lished. For the routing, we used a PRM based al-

gorithm, called SBL (Sanchez and Latombe, 2001),

with random exploration and fast convergence already

used in several robotic manipulators, such as in (Liu

et al., 2009) and (Guernane and Belhocine, 2005).

The article is organized as follows: Section 1 de-

scribes the platform used in the experimental tests.

Section 2 discusses how platform configuration has

been configured. Section 3 introduces the control

strategy that exploits visual feedback for obstacle

avoidance with occlusion of objects in the scene. Sec-

tion 4 presents and discusses the results which demon-

strates the feasibility of the proposed solution to deal

with object occlusion and the integration of visual

feedback trajectory planning for object handling and

obstacle avoidance. Section 5 draws the conclusions.

Figure 2: Frontal and lateral RGB-D acquisition.

2 Platform Set-Up

For precise measurements the monocular and RGB-D

sensors models need to be obtained and calibrated.

For the cameras the pinhole model was chosen. The

calibration is important to relate the camera acquired

information with the manipulator workspace. It gives

the camera geometry and lens distortion parameters.

Then, it is possible to correct the lens distortion and

interpret the physical world more precisely.

After the calibration, the radial k and tangen-

tial p distortions parameters can be obtained. Next,

a correction in the images is applied in order to re-

duce both RGB-D sensors and effector camera distor-

tions, using the estimated distortion coefficients for

each. Hence, the RGB-D sensor calibrated disparity

(dk) for each RGB-D device and the measurable values

in Cartesian space (X,Y,Z) are obtained. Finally, us-

ing Hkf = [Rkf |Tkf] (Hkl = [Rkl|Tkl]), each point in

space acquired by the Kinect IR is reprojected into the

Kinect RGB image and each pixel color is obtained.

The RGB-D sensors output are represented as a

point clouds that characterizes the workspace. Those

point clouds are specified as a function of each RGB-D

sensors coordinate systems (Okf and Okl). See Fig. 2.

The point cloud of each sensor has to be repre-

sented in the manipulator reference system Ob with

origin in its base. That is, the homogeneous transfor-

mation matrixes
Ob
kf H and

Ob
kl H relating those points

from one coordinate system to another have to be

found. This is necessary to the later arm path plan-

ning. With manual alignment of the two referencing

system the homogeneous matrixes
Ob
kf H and

Ob
kl H were

obtained and placed in the results section. During the

alignment the Meshlab (MeshLab, 2012) software was

used. A manual rotation and translation of the refer-

Figure 3: Control Scheme.

ence system Ob was applied up to three axis alignment

with Okf and Okl system to the matrix
Ob
kf H and

Ob
kl H,

respectively.

3 Control System

The control scheme proposed is represented in Fig. 3.

An internal fast joint control ([u, y] loop) and two

slower externals loops for vision and planning are de-

fined. Path planning, target object position and ob-

stacle pose are first calculated by the RGB-D sensor

loop among other features. Target object orientation

is then calculated by the monocular camera loop when

the effector is over it. The description and function of

each block is explained in the following sections. These

blocks are implemented in MATLAB script and C++

language.

3.1 Workspace capture

The RGB-D sensors captures the work scene where

the objects lay in a planar surface. The block was im-

plemented in C++ language where a function is called

to characterize the workspace defining the robot, the

obstacles and the target object. The implementation

is based on Burrus (RGBDemo, 2011). The model ac-

quisition is obtained with a single scene image from

each RGB-D sensor. The algorithm estimates the pla-

nar equation of the table and then extracts the agglu-

tinations (objects) using the PCL library (Rusu and

Cousins, 2011). The estimation is based on the extru-

sion of the superior points in from the agglutinations

up to the table, assuming that the objects are planar.

The volume, color and center of mass are estimated

too. The features extracted from each object allow to

define the target object position (using the center of

mass) and pose of the obstacles. The objects center

of mass −→σ is calculated based on the workspace oc-

clusions. When no occlusion occurs in any sensor, the

nearest RGB-D sensor to the object is used to define

the center of mass, allowing the error reduction in the

effector pose. If partial or total occlusion occurs in one

RGB-D sensor, the other sensor is used. With partial

occlusion in both devices, based on the data obtained

from both sensors one may estimate the center of mass
−→σ by (1) −→σ = −→σkf + (−→σkl −−→σkf)λ, (1)

then, the mean point (λ = 0.5) of the straight line join-

ing both centers of mass is used. The initial and final

effector poses and the initial and final target object

poses are defined in Wconf , a 4× 6 matrix. Using the

volume and color calculated the target object is deter-

mined, eliminating that way that point cloud from the

scene modelling. For each object the point (X,Y, Z)

with least euclidean distance d to the coordinate sys-

tem Ob is calculated. With each object it is possible

to eliminate the point cloud of the manipulator from

the workspace since the manipulator will be the mini-

mum distance to Ob. The point cloud of each obstacle

i (oi), is stored in VRML 1.0 files, which is the block

output.

3.2 Workspace generator

This module takes the obstacles point cloud oi and cre-

ates a workspace model Miv, in VRML format, with

those obstacles, the robot model and the floor model

considered plain. The Miv model is sent to the path

planner. The point cloud of the obstacles oi becomes

a mesh by Delaunay Triangulation. That modeling is

used because the polygons are quite simple to repre-

sent and have many favorable features. The vertex

joint into triangles using that method was based on

the program in (Mian, 2006). The oi meshes (de Berg

et al., 2008) are stored as triangles in VRML 1.0 files.

3.3 Tr(R6 → R5)

Program to calculate the initial and final effector poses

(home pose) and the initial and final target object

(Wconf is a 4× 6 matrix) as a function of the manip-

ulator configuration space (qconf is a 4 × 5 matrix),

given the equivalent joint angles to the spatial po-

sition. The angles are therefore transformed in the

normalized form C =
{

[0 , 1]5
}

to be given by the

routing algorithm. To obtain those configuration it

is used inverse kinematics of the manipulator. The

three configurations in the configuration space qconf

are saved in a text file and used by the path planner

to generate a route free of obstacles.

3.4 Path planning

The library in (Schwarzer et al., 2001) is used in

this function. It implements the SBL algorithm

(Sanchez and Latombe, 2001) that receives as input

the workspace file Miv and the configuration qconf to

create the final path free of obstacles (if it exists). The

output qtask is a matrix of format m × 5 where m is

the number of normalized configurations that could

implement the task. The output goes to a file where

the task to be implemented by the manipulator con-

troller is specified.

3.5 Tr1(R5 → R5e)

A block that receives the normalized configuration

space task qtask and transform those angles in encoder

values qe (m × 5 matrix) to the motors of the arm

joints. Those encoder values are used by the controller

to perform the motions.

3.6 Tr2(R5 → R5e)

A similar function which generates the target object

pose of the manipulator in a varying degree attached

to roll θ5 for the 180 rotational positions. The block

generate two files: the first has values of position en-

coders found in the planner added to the 180 remain-

ing positions corresponding to the variation of joint

θ5 to obtain qexp, a (180 + m) × 5 matrix. The sec-

ond file contains the programming language named

MCL, which will make the driver perform the move-

ments free of obstacles, defines the delays between

commands, the communication via serial port with

camera vision system mounted on the end-effector,

when to pick up the object, release it, etc. Also this file

allows interaction with the inputs and outputs of the

manipulator controller: define when connect a belt, a

pump or motor, among other applications. Finally an

script to automate the API of the controller is opened

(AHK, 2013). This is required since the application

can not be controlled via the command system.

3.7 USB/Serial Port

This module has the function of performing logical-

physical integration between the manipulator and the

two vision loops through the USB port. The block re-

ceives the object angle θ5 obtained in the monocular

vision loop when the manipulator camera is positioned

over the target object. The Tr2(R5 → R5e) outputs

are issued too. The serial port is a virtual port that

allows sending the angle θ5 to choose the target ob-

ject pose among the 180 possible poses. The module

output are the commands c to the controller perform

desired movements.

3.8 Manipulator controller

The manipulator controller receives the information c

and encoders measurements y. It use direct kinemat-

ics to generate the signals for each motor to move the

joints.

3.9 Image Feature Extraction

This block aims at extracting the information from the

image Im, giving a synthetic and robust description

of the target object. It is captured by taking a top

image using the IR-Syntek camera. The object posi-

tion is provided by the RGB-D sensors. To obtain the

object features f (in our implementation the target

object area) we first apply a mean filter which allows

the homogenization of the brightness and saturation

of the image. Then, the threshold technique is applied

to obtain a binary image and consequently extract the

target object area. Also morphological open and close

operation are used retaining the shape of objects and

eliminating isolated values in relationship with neigh-

boring pixels. The implementation of that block was

made using OpenCV (Bradski and Kaehler, 2008).

3.10 Object pose estimation

This block provides the image interpretation. It is

concerned with the measurement of image feature pa-

ptr STK1160 kfrgb kfir klrgb klir

f.kx 714.33 514.10 561.68 518.45 572.23

f.ky 634.56 514.37 561.02 522.74 571.91

cx 349.85 325.94 317.21 323.13 329.22

cy 275.47 251.14 227.74 255.86 238.46

k1 -0.4492 0.2412 0.2065 0.2746 -0.2271

k2 0.2842 -0.8139 0.8088 -0.8002 0.8834

p1 0.0012 -0.0027 -0.0036 -0.0025 -0.0009

p2 -0.0041 -0.0009 -0.0005 0.0012 0.0001

k3 0.0000 0.8612 -0.9960 0.9313 -0.9726

Table 1: Intrinsic and distortion parameters for
the cameras.

rameters from the image regions obtained. With the

features f obtained from the previous block the ori-

entation of the target object are calculated to be ma-

nipulated with the moments technique. The output is

the roll angle orientation θ5 which completes the pose

Wconf provided by the RGB-D sensor.

θ5 =
1

2
tan−1

(
2µ1,1

µ2,0 − µ0,2

)
+ 90◦. (2)

Using this expression one can calculate the orien-

tation of the desired object as a function of the effector

of the manipulator. This module was implemented in

OpenCV (Bradski and Kaehler, 2008).

4 Results

To calculate the intrinsic parameters for arm camera,

a manual calibration routine proposed in (Bouguet,

2011) was used due to the big lens distortion. Thirty

pictures were taken and the twenty sharpest ones have

been chosen. With the calibration performed the in-

trinsic and distortion parameters of the end-effector,

lateral RGB and CMOS Kinect cameras can be seen in

Table 1. It is observed that the tangential distortion

can be neglected since it is much smaller than the ra-

dial distortion. Those parameters obtained are impor-

tant and can be used to correct the image. In the case

of RGB-D sensors a manual calibration was not neces-

sary due to a good detection of the chess board edges.

An automated routine proposed by (OpenCV, 2013)

and implemented by Burrus (RGBDemo, 2011) was

used to calibrate the sensor. The stereo calibration

gives the orientation and translation Hkf and Hkl be-

tween the Kinect cameras.

Hkf =


0.9996 −0.0001 0.0269 0.0247
0.0013 0.9989 −0.0467 0.0017
−0.0268 0.0467 0.9986 −0.0022

0 0 0 1

 , (3)

Hkl =


0.9999 0.0002 −0.0112 0.0242
−0.0009 0.9992 −0.0431 0.0022
0.0015 0.0554 0.9974 −0.0015

0 0 0 1

 . (4)

Frontal Kinect cameras (IR and RGB) have ap-

proximately the same orientation as it is shown in (3).

Similar results was obtained in the Lateral Kinect

cameras with a 2.5 cm baseline as it is shown in (4).

The RMS reprojection error were 0.25 for the monu-

cular camera, 0.19, 0.17 for the frontal kinect IR and

frontal kinect RGB cameras and , 0.16 and 0.17 for

the lateral kinect IR and lateral RGB cameras. Then,

the
Ob
kf H (

Ob
kl H) homogeneous transformation matrix

relating the points from Okf to Ob (Okl to Ob) is cal-

culated as given by

Ob
kf H=


−0.9997 −0.0232 −0.0049 0.1106
0.0044 −0.3817 0.9243 1.0314
−0.0233 0.9240 0.3819 0.5431

0 0 0 1

 , (5)

Ob
kl H=


0.1060 −0.4482 0.8877 1.1448
0.9941 0.0684 −0.0841 0.1377
−0.0231 0.8913 0.4528 0.7892

0 0 0 1

 . (6)

To evaluate the system performance a object oc-

clusions workspace is presented in Fig. 1. For this

scenario, a planning solution can not be obtained

with only the frontal RGB-D sensor as in (Mendiburu

et al., 2013). More general situations can not be cov-

ered with only one 3D capture device. The workspace

captured by both sensors is show in the Fig. 2.

It can be noticed that the frontal RGB-D sensor

could not detect the target object (object α) due to

the occlusion by the obstacle in front of it. Three

obstacles and the manipulator are captured by that

device. However, the lateral RGB-D sensor detect the

target object, the same three objects and the manip-

ulator from a different perspective, adding informa-

tion to the obstacles modelling. In the Fig. 4 it is

presented the composition of both partial workspace

visions (Fig. 2) that are represented in the manipu-

lator base coordinate system using the matrixes
Ob
kf H

and
Ob
kl H. It can also be noticed the object occlusion

elimination in the point cloud. Finally the extrusion

and conversion from the point cloud into triangle mesh

allows complete their models.

Figure 4: Composing the workspace.

In the test, the path planner should per-

form an arm routing between the configurations

qconf = [qhome qinicial qobjetivo qhome]−1, be-

ginning from its initial position qhome, load the target

object at qinicial, unload it at qobjetivo and go back

to qhome, finding a path between those configurations

that takes the robot between those poses without col-

liding with obstacles. It is a fail or error if that tra-

jectory doesn’t exist or not it is not found. The path

planner parameters are defined as ε = 0.012, ρ = 0.15

and s = 500. In the Fig. 5 the simulation of the

routing presenting the task is shown. The qtask con-

figuration is a 14× 5 matrix with 14 configurations to

be performed. The Fig. 5.1 shows the start configu-

ration qhome coinciding with q1, the Fig. 5.2 presents

the qinicial configuration that allows to position the ef-

fector right above the target object (q5), the Fig. 5.3

shows qobjetivo, the desired configuration (q10) and the

Fig. 5.4 shows the final configuration qhome (equiva-

lent to q14). From those figures it can also be observed

the intermediary configurations and segments that al-

lowed to reach each of those configurations avoiding

obstacles. The trajectory found by the path planner

was the one with less poses in three executions of the

SBL algorithm. The total time of execution to per-

form the task is 112, 24 s including the execution of

the vision steps.

Figure 5: Path planning simulation.

In the Fig. 6 the implementation of the manip-

ulator task is presented. The Fig. 5.1, 5.2, 5.3 and

5.4 are related with the configurations qhome, qinicial,

qobjetivo, and qhome of the Fig. 6, respectively. In Ta-

ble 2 the values of the encoderes qe to perform the

task are presented.

The target object dimensions are 42×20×40mm.

The center of mass detected by the system was
−→σe =

[
3.84 18.99 1, 89

]
cm related to manipu-

lator base system. It can be observed that the effector

is positioned above the target object with a predefined

angle θ5 = 0◦. The monocular vision system enabled

the calculation of an angle θ5 = 96◦.

The effector position error depend mainly on the

vision system of the external loop when performing

the center of mass calculation: if the point cloud is

not captured accurately, the system performance can

Figure 6: Path planning results.

qe [θe1 θe2 θe3 θe4 θe5]

qe1 [0 23 −1 0 0]

qe2 [97379 − 35392 − 91961 − 31426 − 12839]

qe3 [181220 26263 − 49818 − 12982 4869]

qe4 [−66795 − 119722 − 165278 − 53181 85283]

qe5 [32026 − 160202 − 230103 − 73952 73952]

qe6 [88977 − 155118 − 230276 − 83326 12400]

qe7 [193406 − 113856 55806 − 4366 73711]

qe8 [285797 − 100158 14657 − 52841 59735]

qe9 [405171 − 165720 − 89663 − 92697 48032]

qe10 [303172 − 182191 − 158068 − 73942 73942]

qe11 [303136 − 216888 − 106992 − 39040 93102]

qe12 [242615 − 26756 72255 62939 10644]

qe13 [132917 3855 46747 36048 − 64]

qe14 [0 23 −1 0 0]

Table 2: Effector configurations qe [bits].

be impacted. The errors are also dependent on the

calibration step for the reference system and less (neg-

ligibly) on the manipulator encoders.

To calculate the effector error pose we use the tar-

get object α and the obstacle A observed in Fig. 1.

In the test, the error pose was calculated by executing

only the step “Workspace capture” ten times. The er-

ror is calculated as ε =‖ −→σv −−→σe ‖. For the object α,

the center of mass is −→σv =
[

3 19 2
]
cm. The ob-

stacle A center of mass is −→σv =
[

0.3 40 10
]
cm.

In the Table 3 the values of −→σe are shown. The tar-

get object α is completely occluded from the frontal

RGB-D. However, the obstacle A is not occluded in

any of the RGB-D sensors. It should be noticed the

the obstacle is positioned at approximately 1.3m from

the lateral RGB-D and 1m from the frontal one.

It can be seen that larger errors are observed when

the distance between the object and the sensor in-

creases. The target object was defined uniquely by

the lateral RGB-D sensor, due to the total occlusion

Obstacle A −→σe (cm) Object α −→σe (cm)

Sensor Kf Sensor Kl Sensor Kf

[0.22 39.87 10.25] [0.37 40.56 10.30] [3.64 18.99 1.86]

[0.15 39.93 10.33] [0.26 40.51 10.34] [3.53 19.05 1.86]

[0.21 39.92 10.32] [0.33 40.49 10.36] [3.55 19.07 1.81]

[0.20 39.93 10.31] [0.23 40.49 10.37] [3.57 19.01 1.72]

[0.18 39.97 10.34] [0.28 40.50 10.36] [3.61 19.03 1.78]

[0.14 39.95 10.35] [0.25 40.55 10.31] [3.59 19.12 1.83]

[0.13 39.90 10.29] [0.29 40.53 10.35] [3.62 19.07 1.71]

[0.19 39.91 10.27] [0.28 40.47 10.34] [3.62 19.04 1.82]

[0.12 39.92 10.26] [0.23 40.52 10.29] [3.56 19.08 1.81]

[0.26 39.94 10.28] [0.26 40.48 10.31] [3.54 19.09 1.77]

ε = 0, 3358 (cm) ε = 0.6118 (cm) ε = 0, 6227 (cm)

Table 3: Distance to the center of mass.

in the other sensor. In the monocular vision system

there are errors ≤ 1◦, which is the size used when 180

rotational positions are defined.

5 Conclusions

A routing method was applied for a manipulator using

a redundant vision system avoiding objects occlusion.

Object detection, robot and obstacles and part trans-

portation have been successfully performed with good

results. The vision system errors have been consid-

ered and the computed center of mass included when

there are total or partial occlusions for some RGB-D

device. The overall control system response is ade-

quate for finding an obstacle free trajectory that is

implemented without hurdles. The system quite is

robust to illumination changes and objects occlusion.

Some improvements can be made by automating the

alignment of reference systems between the RGB-D

sensors and end-effector. Some form of joint control

and the replacement of the monocular camera with

another RGB-D sensor will be considered in future

implementations in order to improve the precision in

object manipulation.

Acknowledgments

The authors would like to thank PPgEE/UFCG,

CAPES and CNPq for the financial support and re-

search grants.

References

AHK (2013). http://www.autohotkey.com/.

Bouguet, J. (2011). Camera Cal-

ibration Toolbox for Matlab.

http://www.vision.caltech.edu/bouguetj.

Bradski, G. and Kaehler, A. (2008). Learning

OpenCV: Computer Vision with the OpenCV Li-

brary., O‘Reilly Media Inc.

de Berg, M., Cheong, O., van Kreveld, M. and Over-

mars, M. (2008). Computational Geometry: Al-

gorithms and Applications., Springer-Verlag.

Guernane, R. and Belhocine, M. (2005). A smooth-

ing strategy for prm paths application to sixaxes

motoman sv3x manipulator, Conf. Rec. IROS

pp. 4155–4160.

Liu, H., Li, Y., Wen, H., Xia, J. and Chu, T. (2009).

Hierarchical roadmap based rapid path planning

for high-dof mobile manipulators in complex en-

vironments, Conf. Rec. ROBIO pp. 189–195.

Macknojia, R., Chavez-Aragon, A., Payeur, P. and

Laganiere, R. (2013). Calibration of a network of

kinect sensors for robotic inspection over a large

workspace, Conf. Rec. WORV pp. 184–190.

Mendiburu, F., Morais, M. and Lima, A. (2013). Vi-

sual feedback trajectory planning for object han-

dling and obstacle avoidance, Conf. Rec. IECON

pp. 1–6.

MeshLab (2012). http://meshlab.sourceforge.net/.

Mian, A. (2006). http://www.csse.uwa.edu.au/.

OpenCV (2013). Camera Cali-

bration and 3D Reconstruction.

http://opencv.willowgarage.com/documentation/.

Rakprayoon, P., Ruchanurucks, M. and Coundoul, A.

(2011). Kinect-based obstacle detection for ma-

nipulator, Conf. Rec. SII pp. 68–73.

RGBDemo (2011). http://labs.manctl.com/.

Rusu, R. and Cousins, S. (2011). 3d is here: Point

cloud library (pcl), Conf. Rec. ICRA 12(5): 651–

670.

Sanchez, G. and Latombe, J. (2001). A single-query

bi-directional probabilistic roadmap planner with

lazy collision checking, Conf. Rec. ISRR .

Schwarzer, F., Saha, M. and Latombe, J.

(2001). Motion Planning Kit (MPK).

http://robotics.stanford.edu/ mitul/mpk/.

