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Abstract— A simultaneous estimation of thickness and refractive index of the biological layer of the layer
structure is still a problem for the use of optical biosensor based on SPR phenomenon. A study of the mor-
phological parameters of the characteristic curve of the phenomenon and identification of its variation during
the formation of the biological layer was applied in a neural network as prior knowledge. With this multiple
prior knowledge a neural network could be trained estimate the quantities the parameter of interest ensuring a
uniqueness to the solution.
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Resumo— A estimação simultânea da espessura e do ı́ndice de refração da camada biológica do complexo
de camadas ainda é um problema à utilização de bio-sensores ópticos baseados no fenômeno SPR. Através de
um estudo dos parâmetros morfológicos da curva caracteŕıstica do fenômeno e da identificação de sua variação
durante a formação da camada biológica possibilitou o uso de uma rede neural na qual pudessem ser inseridas
as informações adquiridas no estudo morfológico da curva. Os conhecimentos prévios permitiram o treinamento
da rede para estimar as grandezas de interesse garantindo a unicidade da solução.

Palavras-chave— Ressonância de plasma de superf́ıcie, rede neural, identificação de sistemas, sistemas bio-
inspirados.

1 Introduction

Some optical bio-sensing techniques are described
in literature. Among them those based on the
Surface Plasmon Resonance (SPR) phenomenon
and fluorescence phenomena are more relevant
(Homola, 2003). The latter one is more selective
and sensitive, however, the SPR technique enables
the highest label free sensitivity and selectivity.
The technique consists in creating a multi-layer ar-
rangement favorable to the occurrence of the SPR
phenomenon. The multi-layer complex is formed
by: a high refractive index optical substrate; a
metal layer, usually gold; a biological layer that
immobilizes substance to be analyzed; and a ex-
ternal medium layer, air or water. A light focused
on the layer complex excites the phenomenon and
is reflected with some variations according to the
formed layer. Detect these variations is useful to
characterize the formed layer complex.

The SPR biosensor has great versatility of ap-
plications since its biological layer can be prepared
to immobilize a most diverse group of substances.
Determined the reaction to be analyzed the main
difficulty in using the SPR biosensor consists in
determining a combination of substances sensitive
to the reaction that adhere to metallic layer. To
detect a viruses, for example, a substances that
bind to the antibody and gold is necessary.

The SPR technique has been used for over

two decades, but its limitations are not fully char-
acterized. One of the most important character-
istics of the SPR technique which is not yet fully
understood is its capability for determining simul-
taneously the thickness and refractive index of the
biological layer. This study addresses specifically
this issue.

To simultaneously characterize both the
thickness and refractive index of biological layer
reduces the estimation error since each property
influences the other. The correct characterization
of biological layer also has some benefits in terms
of increasing the sensitivity of the SPR biosen-
sor; a study of the kinetics of layer formation; a
determination of when the layer is ready to start
sensing, reducing waste of solutions; and an iden-
tifying of imperfections in the layer formed.

Some solutions have been proposed to solve
the problem, however each solution has its spe-
cific limitation. One of these solutions is based on
data fitting techniques according to a bio-sensor
model result of Fresnel equations. It is limited
to a biological layer up to 2 nm (Phelps and Tay-
lor, 1996). Other solution is to vary a fixed param-
eter of the system and get a result for each value
of this parameter. By crossing data results in a
single solution can be determined. The parame-
ters can be: the solvent used in the external layer;
the metal layer thickness (de Bruijn et al., 1991);
exciting light, its wavelength or incidence an-



gle (Peterlinza and Georgiadis, 1996; Zhang and
Wang, 2009; Johnston et al., 1995). These solu-
tions are limited in application since they require
changes to the system and/or data acquisition.

Characterize both the biological layer’s refrac-
tive index and thickness is the main objective
of the present paper. The characterization must
be performed simultaneously and using only the
measured SPR biosensor response curve, the SPR
curve. This way a general solution to the prob-
lem is determined. Its application includes real-
time monitoring of the layer, determination when
the layer is fully formed, and identification of a
wasted layer. The solution proposed in this paper
is based only on the SPR curve and its morpho-
logical features so that it does not required any
specific system modification.

2 Methodology

A simultaneous estimation of the refractive index
and thickness of the biological layer using data
only from the SPR curve has its main problem
in the non-uniqueness of the answer. The data is
composed by aa insufficient number of parameters.
So that solutions obtaining different data samples
by crossing excitation are so popular, as exam-
ple two light sources at different frequencies. The
non-uniqueness generates disagreements in the lit-
erature on whether an estimate based only on the
SPR curve is possible or not.

The problem was studied focusing in the mor-
phology of the SPR curve. The behaviors of mor-
phologic parameters of the curve present impor-
tant knowledge that can be processed by a non-
linear estimation method as a key to solve the
non-uniqueness problem. A conventional neural
network adapted to include these knowledge was
the non-linear method chosen.

2.1 Morphology of SPR curve

The incident light excites the phenomenon and
is reflected. The reflected light intensity, reflec-
tivity, varying with the monitored parameter is
presented by a SPR curve. Among others, the
most used interrogation modes (Sousa, 2013) are
angular interrogation mode (AIM), in which the
incident angle (θ) varies with a constant wave-
length (λ), and the wavelength interrogation mode
(WIM), in which the incident angle is kept con-
stant and the wavelength varies.

The characteristic SPR curve is shown in Fig-
ure 1. There is a maximum reflection of light
(tending to total reflection) when the monitored
parameter moves away from the resonance con-
dition θR or λR, depending on the interrogation
mode. Next to resonance there is a significant
drop in reflected light, but not to zero, despite of
what happens in theory. The decrease in reflected

intensity is asymmetric relative to the resonance
value: R(θR + ∆θ) 6= R(θR − ∆θ). The incident
light ranges the angles [θI , θF ] depending on the
configuration used: bio-chip, incident light, pho-
todetectors, or other.

The AIM and WIM curves have the same form
and morphological parameters. Besides the reso-
nance angle replaced by the resonance wavelength
λR. The abscissa axis varies in the range [λI , λF ].

Different parameters can be extracted from
the SPR curve and can be used to characterize its
morphology. All these parameters (for AIM) are
shown in Figure 1. They are:

Curve energy (E) : The curve energy is calcu-
lated by the integral:

E =

∫ θF

θI

R(θ)dθ (AIM) (1)

Curve depth (dip) : The reflected light reduc-
tion at resonance condition from total reflec-
tion condition. Ideally the reflection in reso-
nance is zero, maximum dip. In real condi-
tions this value ranges from 0.4 to 0.6.

Resonance angle (θR) - AIM: The angle at
which happens the curve minimum. The res-
onance angle can be used to calculate the re-
fractive index of the medium if its sensitiv-
ity to the layer thickness is ignored. The re-
flected light is sampled according to the size
of the photodetectors and its sensitive region,
so that a data processing is used to identify
the resonance. Polynomial fit or the calcula-
tion of curve centroid through the First Mo-
mentum technique are greatly used.

Baseline (BL) : Threshold to discard part of
the curve. It is assumed that the points of
the curve with values below this threshold
are more significant. The most used tech-
niques for this calculation are the full width
half maximum value (FWHM) and dynamic
baseline (Thirstrup and Zong, 2005).

Curve width (Γ) : The distance between the
two points that intersect the baseline is de-
fined as curve width. Also are calculated
the horizontal distance between the minimum
value θR and both the intersection points, by
left θLBL and right θRBL the minimum.

CL = θR − θLBL

CR = θRBL − θR
Γ = CL + CR (2)

Asymmetry (G) : The shape of the curve is
also studied by its asymmetry about the res-
onance value:

G = CR/CL (3)



Figure 1: Characteristic curve of the SPR phenomenon (AIM) and relevant morphological parameters:
Energy (E), Baseline (BL), Resonance angle (θR), depth (dip), width (G) and asymmetry (Γ).

2.2 Simulation

Simulations based on the Fresnel equations model
for the SPR phenomenon have been extensively
performed adjusting the parameters according to
the bio-sensing module of Texas Instrument based
on the Spreeta bio-chip (SPREETA, 2000; Melén-
dez et al., 1997), see Table 1.

Ranging the refractive index from 1.33 to 1.34
at step of 10−4RIU and the layer thickness from
0 nm to 100 nm at a step of 1 nm were simulated
10,201 SPR curves. These curves were used in a
theoretical study about influence of the biological
layer properties (refractive index and thickness)
to the SPR curve and its morphological parame-
ters. The monotonicity, concavity and growth of
each influence curve were analyzed, according to
(Filho, 2006; Filho et al., 2010). The results are
summarized in Table 2 for refractive index and
Table 3 for thickness variation.

2.3 Multiple prior knowledge neural network
(MPKNN).

The tool used to estimate the biological layer
properties was a neural network. To solve the
non-uniqueness problem, besides increase learn-
ing speed and accuracy of the estimation, a neu-
ral network in which prior knowledge about the
curve morphology could be inserted was selected.
The Multiple Prior Knowledge Neural Network
(MPKNN) described by (Haichuan et al., 2010)
was implemented. The main difference between
a MPK neural network and a conventional one is
the training method. The chosen network includes

Table 1: SPREETA simulation parameters.

Parameter Value
Refractive index of the 1.48
optical substrate
Refractive index of gold layer 12.19 + 48.5i
(Johnson and Christy, 1972)
Gold layer thickness 50nm
Light wavelength (peak) 830nm
External medium refractive 1.33
index: Water
Incident angle range 64 a 80
(degrees) step: 0.25

Table 2: SPR curve morphological parameters
varying with the biological layer refractive index
(n).

Parameter Growth Concavity
Energy Decrease —

(E) ∂E/∂n < 0
Resonance Increase —
angle (θR) ∂θR/∂n > 0
Baseline Increase —

(BL) ∂BL/∂n > 0
Depth Decrease —
(dip) ∂dip/∂n < 0

Width Increase —
(Γ) ∂Γ/∂n > 0

Asymmetry Not Monotonic —
(G)

Table 3: SPR curve morphological parameters
varying with the biological layer thickness (d).

Parameter Growth Concavity
Energy Decrease Concave

(E) ∂E/∂d < 0 ∂2E/∂d2 > 0
Resonance Increase Convex
angle (θR) ∂θR/∂n < 0 ∂2θR/∂d

2 < 0
Baseline Increase Convex

(BL) ∂BL/∂d > 0 ∂2BL/∂d2 < 0
Depth Decrease Concave
(dip) ∂dip/∂d < 0 ∂2dip/∂d2 > 0

Width Increase Convex
(Γ) ∂Γ/∂d > 0 ∂2Γ/∂d2 < 0

Asymmetry Decrease Convex
(G) ∂G/∂d < 0 ∂2G/∂d2 < 0

constrictions while training that are consequence
of the prior knowledge to be inserted.

The MPKNN is a three layers neural network
with different quantities of neurons per layer. The
input (and output) layer have as many neurons as
input (or output) variables the network has. The
third layer of the MPKNN is a hidden layer with
as many neurons as necessary. The hidden layers
is composed by linear (4) and nonlinear (5) acti-
vation function neurons. So that, each input vari-
able is computed linearly and nonlinearly, if any
of these behavior does not fit the variable it is for-
gotten by the pruning process also implemented.
The network is described by (6).



Figure 2: Multiple prior knowledge neural net-
work structure. The neurons up to j1 at the hid-
den layer are non-linear and the others are linear.

Φj2(x) = x. j2 = m+ 1, ..., j (4)

Φj1(x) =
1

1 + e−x
. j1 = 1, 2, ...,m (5)

yk =
∑
j1

[
Φj1

(∑
i

xiωj1i + bj1

)
ωkj1

]
+

∑
j2

[(∑
i

xiωj2i + bj2

)
ωkj2

]
+
∑
i

ωkixi + bk, (6)

The MPK network structure can be seen in
Figure 2. The entries xi (i = 1, ..., 6) are the
normalized morphological parameters of the curve
(see Tables (2) and (3)), the outputs yk (k = 1, 2)
are the normalized biological properties to be esti-
mated (refractive index and thickness). The data
is normalized, or retrieved, in order to have zero
mean and unit deviation according to (7).

xi = (Xi − X̄)δX (7)

The network has a batch training with error
calculated by (8), A is the number of samples for
training and S the number of outputs of the net-
work, yT the output of the network being trained
and yR the output data of the training set. The
error includes a criterion for pruning the network
through bayesian and gaussian functions to evalu-
ate the weights of the internal connections (input-
hidden and hidden-output) with (9) and on direct
connections (input to output) with (10). Min-
imizing these errors during training ensures the
pruning of the neural network, the redundant or
minimally influential weights are reset (deleted),
implying in the simpler network as possible.

SSE =

A∑
a

S∑
s

(yT − yR)
2
, (8)

Ecω = n1 log
(∑

|ωji|
)

+ n2 log
(∑

|ωkj |
)

(9)

Edω =
1

2
d log

(∑
ωki

2
)

(10)

being n1 the number of connections from the in-
put layer to the hidden layer, ωji the weight of
these connections; n2 the number of connections
from the hidden layer to the output layer and ωkj
the weight of these connections; d the number of
hidden layer connections to the output layer and
ωik the weight of these connections.

2.4 Training data and algorithm

The MPKNN training is performed with an algo-
rithm for nonlinear optimization with boundary
conditions. The weights must be determined to
minimize SSE + γ(Ecω + Edω). Being γ a regu-
larization factor to define the priority level of the
pruning criteria.

Prior knowledge is inserted during the train-
ing phase. The information presented in Tables 2
and 3 are inserted in training as boundary condi-
tions in the optimization algorithm. Defined yk at
(6), we can define its derivatives of first (11) and
second (12) orders. A thickness restriction must
be included in training too: y2 > 0.

∂yk
∂xi

=
∑
j1

ωj1ihj1(1−hj1)ωkj1+
∑
j2

ωj2iωkj2+ωki

(11)
∂2yk
∂xi2

=
∑
j1

ωj1i
2hj1(1− hj1)(1− 2hj1)ωkj1 (12)

hj1 = Φj1

(∑
i

xiωj1i + bj1

)
A sequential quadratic programming algorithm
(SQP) (Nocedal and Wright, 1999) meets train-
ing needs of the network.

The lack of experimental data already char-
acterized difficulties the network training and val-
idation of the results. The network training was
conducted with 2,500 simulated curves with re-
fractive index ranging from 1.3301 to 1.3350 at a
step of 10−4RIU and layer thickness ranging from
1 to 50 nm. Also, 500 experimental curves for
water were used in training. It was possible only
because when the biological layer and the external
layer are the same, the three layers is enough to
characterize the entire the system, and this model
is entirely known.

The training data was divided in training set,
used calculate the weights, evaluate set, used to
evaluate the if the training is finished or another
interaction is needed and performance set, used to
evaluate the performance of the already trained
network, analyzing if the training was not super
specialized, fitting only to the training set.

3 Results

The Many factors influence the neural network
performance. The most important ones are pa-



Table 4: Mean error of neural network training for
different values of γ.

Regularization Average percentage error
factor γ n3 d3

10 0.0054 1.1098
5 0.0014 0.9297
2 0.0015 0.8631
1 0.0013 0.9135

0.5 0.0013 0.9169
0.25 0.0059 1.0371

rameters chosen by the user: (i) the regularization
factor (γ), (ii) the number of neurons in the hid-
den layer, (iii) data organization. The influence of
each one of these factors was studied separately in
order to find the optimal network.

The influence analysis of performed keep-
ing constant two parameters and varying the
third. For each parameter combination the train-
ing epoch was performed and evaluated calculat-
ing the average error of the performance data set.
The training epoches were repeated as many times
as needed to the performance analyzes result in an
average error variation less then

3.1 Regularization factor

The neural network was trained to γ =
10, 5, 2, 1, 0, 5, 0.25, with a constant number of ten
neurons at the hidden layer, half linear and half
non-linear. The average error obtained in each
network can be seen at Table 4. Although a small
difference, the smallest deviation results were for
γ = 1 and γ = 2. The criteria adopted to choose
the γ value was the one that minimizes the error
layer thickness estimation, since the magnitude of
its deflection is much larger than the deviation of
the refractive index.

3.2 Hidden layer neurons

Experiments were performed with the chosen reg-
ularization factor γ = 2 and varying the number
of neurons at the hidden layer hidden: six, eight
and ten, always half linear and half nonlinear. No
significant difference in results was observed, how-
ever. Profit attributed to the pruning performed
by (9) and (10). So that, the network with six
neurons was chosen only to reduce the complexity
the network by approximately a third.

3.3 Data organization

The network convergence and response were also
evaluated for different input data. Morphological
data from the SPR curve were evaluated when cal-
culated by different methods. Two baseline algo-
rithms: FWMH and dynamic baseline. And two
minimum search algorithms: polynomial fit and
the first momentum. The results are shown in
Table 5.

Defined the optimal neural network, it was
trained with mainly simulated data and exper-
imental data from water. The resulting MP-
KNN was applied to 5000 data samples gener-
ated by a one-hour experiment alternating the an-
alyzed solution: water and a 50% PBS (Phosphate
Buffered Saline) solution with refractive index of
1.5 × 10−3RIU . The PBS layer thickness could
not be measured, so that, this data could neither
be used in training neither there were a expected
estimated value. The PBS solution only generates
reversible bind with gold, which can be removed
with just water. The MPKNN estimated values
are presented through a sensorgram in Figure 3.

4 Discussion

The experiment produced results very close to
the expected ones. When applied to simulated
data the error was less than 1%. Experimental
data produced results of refractive index averag-
ing near of 1.5× 10−3RIU when the analyte was
exchanged. The layer thickness estimative ap-
proaches to a null thickness layer when water is
in the bio-sensor, that is, a three layer model,
as used in training. The actual layer thickness
is unknown, so, to validation of results, the re-
verse process was performed. A simulated curve
was generated with the estimated data, its result
was consistent with the experimental curve.

5 Conclusions

A correctly trained neural network allows to mon-
itor the biological layer, knowing in real-time its
parameters, refractive index and thickness. This
information permits to identify when the layer is
fully formed or its wear. A quantitative evaluation
of the estimated solution requires more study and
experimentation. However, the results allowed a
qualitative response, allowing the user to iden-
tify when layer formation is already complete and
monitor its wear. It permits to faster prepare the
biosensor for measures, with no solutions wastes
or wrong data due to an not complete layer.
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bio-sensores ópticos., Master’s thesis, UFCG
- Universidade Federal de Campina Grande.

SPREETA (2000). TSPR1A170100:
SpreetaTMLiquid Sensor, Texas Instru-
ments, Dallas, Texas.

Thirstrup, C. and Zong, W. (2005). Data analysis
for surface plasmon resonance sensors using
dynamic baseline algorithm, Sensors and Ac-
tuators B: Chemical (106): 796–802.

Zhang, J. and Wang, G. P. (2009). Determina-
tion of thickness and dielectric constant of
thin films by dual-wavelength light beaming
effect of a metal nanoslit, Journal of Applied
Physics 106(3): 034305.


