
DESIGN OF SINGULARITY-ROBUST AND TASK-PRIORITY KINEMATIC
CONTROLLERS IN THE UNIT DUAL QUATERNION SPACE

Murilo Marques Marinho∗, Bruno Vilhena Adorno†

∗Universidade de Brasília
Brasília, Distrito Federal, Brazil

†Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Emails: murilomarinho@lara.unb.br, adorno@ufmg.br

Abstract— The great number of possible tasks that can be performed by a robotic manipulator has inspired
the development of many different kinematic control strategies in the literature. These classic strategies often
use minimal representations for the end-effector pose, leading to representation singularities. Alternatively, in
strategies that use non-minimal representations, as homogeneous transformation matrices, it is usually difficult or
counterintuitive to extract suitable parameters in order to control the robot. On the other hand, dual quaternions
are a suitable representation to unify pose representation and control techniques, and hence this work reviews
the design of singularity-robust and task-priority kinematic manipulator controllers and adapts these designs to
the unit dual quaternion space. Further, the performance of the designed controllers is evaluated in a software
framework composed of ROS, OpenRAVE and the custom DQ_robotics library.
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1 Introduction

Robotic manipulators are used in a wide range
of applications, from simple dish cooking (Ya-
mazaki et al., 2010) to soil sample extraction
on Mars1. Many of these applications are best
described as the end-effector motion, thus mo-
tivating the design of controllers directly at the
end-effector level. When those motions are per-
formed by robots at considerably low velocities
and well behaved drives—allowing the manipula-
tor dynamics to be neglected—kinematic control
strategies can be successfully applied.

Naturally, this inherent disparity among the
possible tasks to be performed by the manipula-
tor led to the creation of different kinematic con-
trol strategies. In these strategies, the controller
has to impose the end effector pose according to
the task description, while coping with the manip-
ulator joint limits, task-space redundancy, task-
space singularities and generic optimization crite-
ria. These issues are very distinct among them-
selves. Whereas redundancy concerns the manip-
ulator possessing more degrees of freedom than a
task requires, resulting in infinite solutions to the
inverse kinematics problem, singularities concern
the degeneration of a given amount of degrees of
freedom when the robot is in specific configura-
tions, in which small velocities in the task space
may only be achieved by imposing dangerously
high velocities to the robot actuators.

In order to engage this issues systematically, a
suitable rigid body motion parameterization must
be chosen. Unit dual quaternions have a convinc-
ing set of advantages over more widespread rep-
resentations, such as homogeneous matrices and

1http://www.nasa.gov/mission_pages/msl/index.html

Euler angles plus Cartesian coordinates (Adorno,
2011; Aspragathos & Dimitros, 1998; Pham et al.,
2010). Most controllers, however, must be re-
designed in unit dual quaternion space. In order
to design and implement these controllers based
on dual quaternions in a real system, some ef-
forts have been done towards the development of
a unit dual quaternion computational open-source
library, called DQ_robotics2, which is available
in Matlab, C, and C++ languages. It implements
much of the basic dual quaternion arithmetics and
manipulator kinematics functions, but still lacks
manipulator robots control algorithms in an easy-
to-use interface available to the robotics commu-
nity. This is a systematic issue in the robotic ma-
nipulation research: even though there are many
algorithms available, they are seldom made openly
available for anyone to use and evaluate.

With respect to the use of custom libraries
in physical robotic systems, much attention has
been given to the modularity and reusability of the
Robot Operating System (ROS)3. In this system,
sensor and robot interfaces are openly shareable
among developers in a systematic and organized
way, hastening the development process. One key
characteristic of ROS is its capability of incorpo-
rating different libraries and frameworks in a uni-
fied net of services and topics. This allows the
unified integration of both custom libraries and
widely used frameworks.

One of these frameworks is the Open Robotics
Automation Virtual Environment (OpenRAVE)
(Diankov, 2010). OpenRAVE allows the testing
and simulation of generic robotic systems in a vir-
tual environment. Moreover, it implements sev-

2http://dqrobotics.sourceforge.net/
3http://www.ros.org



eral motion planning algorithms which are fully
available for use. Naturally, the most reasonable
way to make an initial validation of a robot con-
troller would be to start in a simulated environ-
ment such as OpenRAVE.

In this work, we tackle both mathemati-
cal and computational problems of implementing
kinematic controllers, with or without numerical
filtering, and the pose controller with position pri-
ority in unit dual quaternion space, augmenting
the capabilities of the DQ_robotics/C++ library.
The controllers are implemented and evaluated in
a framework composed of ROS, OpenRave, and
the DQ_robotics/C++ library.

2 Mathematical Background

Some mathematical tools are reviewed in this sec-
tion for better understanding of the controllers de-
vised in unit dual quaternion space. We begin by
recalling dual quaternions and their basic algebra
when representing rigid transformations, followed
by a brief reminder of robotic manipulator kine-
matic control schemes and some problems that
may arise in the execution of tasks represented
in the task-space.

2.1 Dual Quaternions

Dual quaternions are the basic building blocks of
the kinematic control theory implemented in this
work. We begin by defining ı̂, ̂ and k̂ as the three
imaginary components of a quaternion such that
(Kuipers, 1999)

ı̂2 = ̂2 = k̂2 = −1 and ı̂̂k̂ = −1.

An arbitrary rotation of a rigid body by an angle θ
around an axis n = nx ı̂+ny ̂+nz k̂ is represented
by the unit quaternion

r = cos

(
θ

2

)
+ n sin

(
θ

2

)
.

A translation described by t = tx ı̂+ ty ̂+ tz k̂
can be associated to a rotation r in order to rep-
resent the complete rigid motion. This is repre-
sented by the dual quaternion

p = r + ε
1

2
tr,

where ε is nilpotent; i.e., ε 6= 0 but ε2 = 0 (Selig,
2005).

The vec operator maps a given dual quater-
nion p into an eight-dimensional column vector;
i.e.,

vec(p) ,
[
q1 q2 q3 q4 q5 q6 q7 q8

]T
,

where qi, i = 1 . . . 8, are the coefficients of p.

2.2 Kinematic Control of Serial Manipulators

The manipulator forward kinematics model
(FKM) provides the pose of the end effector from
the current values of the joint variables. Usually,
the FKM of a manipulator robot can be easily ob-
tained from the Denavit-Hartenberg parameters
directly in dual quaternion space (Adorno, 2011).

At a first glance, the inverse kinematics, which
is our aim in most tasks, should be as easy as the
forward kinematics. However, a closed-form solu-
tion for the inverse kinematics does not exist for
the general case. A common alternative is to use
the inverse differential kinematics. More specif-
ically, consider a serial manipulator with more
than six degrees of freedom, which will be re-
dundant for the pose control task. The differen-
tial FKM maps the manipulator joint velocities
θ̇ ∈ Rn×1 into the generalized end-effector veloc-
ity vec ṗ

eff
∈ R8×1:

vec ṗ
eff

= JAθ̇, (1)

where JA ∈ R8×n is called the manipulator ana-
lytical Jacobian (Pham et al., 2010) and depends
on the current robot posture. As (1) is a simple
linear mapping, it is common practice to invert
the Jacobian to obtain the joint velocities for a
given desired end effector velocity ṗ

d
; that is,

θ̇ = JA
inv vec(ṗ

d
), (2)

where J invA represents a generalized matrix inver-
sion that suits the manipulator posture, number
of degrees of freedom and general optimization cri-
teria. This process is called the inverse differential
FKM. Problems related to the robot redundancy
and robustness to singularities in the task space
are often determined by the choice of the general-
ized inversion J invA .

Manipulator redundancy is the existence of
more degrees of freedom in the manipulator than
the necessary to perform a given task. Mathe-
matically, this redundancy allows (2) to have an
infinite number of solutions. In this situation, the
matrix inversion is not defined, and we often resort
to pseudoinverses (or generalized inverses). The
Moore-Penrose pseudoinverse, for instance, gives
the minimum-norm solution of the joint velocities,
and is an intuitive resource to handle this situa-
tion. On the other hand, redundancy allows the
controller to use the extra degrees of freedom in
the execution of secondary tasks. This is usually
performed by projecting the secondary control law
in the nullspace of the primary task, as was intro-
duced by Liegeois (1977). In this case, however,
one does not obtain the minimum norm solution
for the vector of joint velocities.

Singularities correspond to certain configura-
tions in which the rank of the Jacobian in (2)



degenerates. This usually happens when, for ex-
ample, the manipulator is stretched to its limit.
In the neighborhood of a singularity, the singular
values of the Jacobian become extremely small,
which results in high values for the joint veloci-
ties when the Moore-Penrose pseudoinverse is di-
rectly applied. For this reason, earlier works (Chi-
averini, 1997; Maciejewski & Klein, 1988) suggest
the use of damped pseudoinverses (with or with-
out numerical filtering) or SVD-based pseudoin-
verses with truncated singular values.

3 Control Strategies

In the previous section, it was noted that the
choice of a suitable generalized inverse J invA can
be used to deal with manipulator redundancy and
singularities in the task space. The use of the task
nullspace is another possibility that increases the
number of possible controller designs. This section
describes controller designs that consider singu-
larities and multiple tasks in unit dual quaternion
space.

3.1 Pose controller with damped pseudoinverse

As the differential mapping is fairly simple, the
ordinary closed loop solution for the end effector
pose control in unit dual quaternion space is

θ̇ = KJA
inv vec(p

eff
− p

d
), (3)

being K a positive definite gain matrix that de-
fines the rate in which this controller converges
(Pham et al., 2010).

An initial approach to the kinematic singu-
larity issue would be to choose JAinv in (3) as
the damped pseudoinverse (Maciejewski & Klein,
1988)

J invA , JTA (JAJ
T
A + λ2I)−1, (4)

where λ ∈ R is the damping factor of the inver-
sion. This allows the controller to have some ro-
bustness against task space singularities, at the
cost of steady state error in the end effector pose.
Another reasonable choice in some tasks is to use
the Moore-Penrose pseudo-inverse with truncated
singular values.

Implementation aspects: when imple-
menting damped inversions such as (4), it is a
good practice to exploit the mathematical proper-
ties of these matrices for a more efficient algorithm
implementation. Notice that B = (JAJ

T
A + λ2I)

is a positive definite matrix for λ 6= 0 and any real
matrix JA; so the solution of X = CB−1, where
C , JTA and X , J invA , can be found more effi-
ciently using the Cholesky decomposition. Some
linear algebra libraries4 have implementations of
this algorithm.

4We used the Eigen 3 library in our C++ implementa-
tion. http://eigen.tuxfamily.org/

3.2 Pose controller with numerical filtering

To begin the discussion about the pose controller
with numerical filtering, consider the singular
value decomposition

JA = UΣV T ,

where U ∈ R8×8, V ∈ Rn×n; U−1 = UT ,

V −1 = V T and Σ =

[
S 0
0 0

]
, where S is the diago-

nal matrix containing the singular values of JA in
descending order from σ1 to σ6. Note that even
though JA ∈ R8×n, its maximum rank is 6 due
to the fact that unit dual quaternions are not a
minimal representation.

As introduced by Chiaverini (1997), choosing
a static damping factor λ in (4) causes an inversion
error even when the manipulator is not near a task
space singularity. Adapting the algorithm for the
unit dual quaternion space controller, the solution
becomes{

λ2 = 0 , σ6 > µ

λ2 = (1− (σ6

µ )2)λ2max , σ6 ≤ µ
. (5)

The distance from a singularity is defined by µ > 0
∈ R and the maximum damping factor, λ2max, is
applied when the manipulator is at the singular-
ity. Using this variable damping factor allows the
controller to have no steady state error when the
manipulator is far from a singularity.

When using (5) in (4), and the controller
is near a singular configuration, the inversion is
isotropically damped. This means that not only
the unfeasible directions of the end-effector veloc-
ity are damped, but also the feasible ones. In
cases where σ6 ≤ µ and σ5 > µ, the manipula-
tor is at a single kinematic singularity. In this
situation, it is possible to successfully filter the
damping such that only the unfeasible direction
will be damped (Maciejewski & Klein, 1988). This
process is called numerical filtering, and we may
apply it to the controller by choosing

J invA , JTA (JAJ
T
A + λ2u6u

T
6 )−1,

where u6 is the sixth column of the matrix U ; that
is, u6 is the column vector in U that corresponds
to the sixth singular value.

As it is possible for the controller to encounter
more than one singularity at a given posture, an
isotropic damping β > 0 ∈ R where β2 << λ2 is
added to the inversion, resulting in

J invA , JTA (JAJ
T
A + λ2u6u

T
6 + β2I)−1, (6)

which is then used in (3).
Implementation aspects: even though the

variable damping and numerical filtering allow
better steady state results, the need for computing
the SVD of the Jacobian may hinder the use of the
controller in less powerful computational systems.



3.3 Task-priority based controller using quater-
nion primitives

There are some situations (e.g., singularities, joint
limits, intrinsic under-actuation) in which some
regions in a manipulator configuration space are
not reachable and hence the end effector pose can-
not be arbitrarily chosen for all regions of the
robot workspace. Although this issue is more
evident when using manipulators with less than
six degrees of freedom, redundant manipulators
may also experience loss of dexterity inside its
workspace due to singularities or joint limits. On
the other hand, some tasks, as pick and place op-
erations with small sealed objects, may only re-
quire the complete end effector pose control in spe-
cific parts of the tasks trajectory. During the tra-
jectory execution, the end effector position holds
more importance than the end effector orienta-
tion. Using a task-priority controller with end ef-
fector position as the first objective and orienta-
tion as the second, the task is fully modeled: full
pose control will be achieved when the manipula-
tor is able to comply, or else only the position is
effectively controlled while the orientation is sta-
bilized. Clearly, sometimes orientation control is
more relevant for the task than position control.
However, since the reasoning is the same in both
cases, in the following we present only the situa-
tion where the position controller has higher pri-
ority than the orientation controller.

In order to mathematically model the task-
priority controller in dual quaternion space, we be-
gin by defining the position Jacobian, Jp ∈ R4×n,
such that

vec ṫeff = Jpθ̇, (7)

where teff is the end effector position and we also
define the orientation Jacobian, Jo∈ R4×n, such
that

vec ṙeff = Joθ̇, (8)

where reff is the end effector orientation (Adorno,
2011).

The complete controller design for task prior-
ity with position as the first objective and orien-
tation as the second is given by

θ̇ = J invp vec(teff − td)

+NpJ
inv
o vec(reff − rd), (9)

where Np is the nullspace projector (Liegeois,
1977); that is,

Np = (I − JpJ invp ). (10)

The generalized matrix inversion operator in (9)
may be chosen as any of the possibilities presented
in Sections 3.1 and 3.2. For instance, a simple
choice is{

J invp = JTp (JpJ
T
p + λ2translationI)−1

J invo = JTo (JoJ
T
o + λ2rotationI)−1

.

Figure 1: Manipulator configurations during the
simulations: initial configuration (top) and final
configuration (bottom).

4 Simulations

In order to evaluate the controllers, a software
framework composed of ROS, OpenRave, and
DQ_robotics was created and tested in a Ubuntu
12.04 64bits environment. All the controllers ex-
plained in the last section were implemented in
the DQ_robotics library and are openly available
for use. The library was organized to allow the
use of any serial link manipulator and has also an
integrated data plotting software.

The simulated manipulator chosen for the
simulations was a 7 degrees-of-freedom Schunk
lwa3. The task, to be performed by all controllers,
was to move from an initial singular configuration

θ =
[
0 π

2 0 0 0 0 0
]T

to the final singular end effector pose

p
d

= k̂ − ε1.305

2
.

Figure 1 shows the initial and final configurations
of the robot manipulator.

The purpose of placing initial and final con-
figurations inside singular regions was to evaluate
the robustness to singularities of all controllers. In
order to have a standard reference for comparison,
simulations were also performed with a controller
which uses the Moore-Penrose pseudoinverse in
(3).

The controllers are considered to have reached
the target pose when the selected error measure-
ments are within a 10−2 tolerance. In the pose
controller with damped pseudoinverse, in the one
with Moore-Penrose pseudoinverse, and in the one
with numerical filtering, this tolerance is∥∥∥vec

(
p
eff
− p

d

)∥∥∥ < 10−2



and, in the priority controller, this tolerance is

‖vec (teff − td)‖ < 10−2.

The sample rate used in the simulation was
100Hz. In addition, the robot joint velocities were
considered uniform during the sampling interval,
simulating a zero order hold of the controllers out-
put in that iteration.

During the simulations, the scalar gains for
the controllers based on (4), (6), and the controller
with Moore-Penrose pseudoinverse were selected
as K = 0.35, and the gains for the task-priority
controller were chosen as Kp = 0.25 and Ko =
0.05.

The damping factors were λ2 = 0.1 in the pose
controller with damped pseudoinverse; λ2 = 0.1,
β2 = 0.01 and µ = 0.1 in the numerical filtered
controller, and λ2translation = 0.15, λ2rotation = 0.4
in the task-priority controller with translation pri-
ority. In conjunction with the gains, the damp-
ing factors were chosen as to make the upper-
bound for the joint velocities equal to 0.5rad/s,
considering that the maximum angular velocity of
any joint of the Schunk robot5 is approximately
0.8 rad/s. Figure 2 presents the performances of
each controller.

The results of the controller with damped
pseudoinverse and of the numerical filtered con-
troller are hard to distinguish. As the damping
is approximately the same for both controllers,
the effectiveness in pose control is slightly notice-
able from the difference in the convergence time.
While the numerical filtered controller converged
in 53.51 s, the controller with damped pseudoin-
verse converged in 53.54 s. This small difference
can be explained by the fact that the numerical
filtered controller gives a more accurate inverse
far from singular configurations. However, despite
the fact that only the initial and final poses were at
singular configurations, both controllers behaved
approximately in the same way, opposed to our
initial expectation. This is an issue that we may
investigate in future works.

On the other hand, the task-priority controller
with translation priority had a different behav-
ior. As we chose smaller gains for this controller
in order to obey the constraint of joint veloci-
ties (i.e., < 0.5 rad/s), it converged slower than
the damped and the numerical filtered controllers
(approximately 80 s). In addition, the prioritized
scheme was also robust to the singular configu-
rations, suggesting that the partitioning of the
Jacobian matrix into smaller matrices improved
the numerical conditioning of the whole system.
However, aside from the empirical results we did
not perform any theoretical study to support this
claim. As a consequence, in future works we in-
tend to investigate the supposedly robustness of

5http://www.schunk.com/schunk_files/attachments/
PRL_gesamt_EN.pdf

the prioritized scheme with dual quaternions from
a theoretical standpoint.

The last controller, which makes use of a
classic Moore-Penrose pseudoinverse, shows the
negative effects of the ill-conditioning near sin-
gular configurations. Due to the singularity at
the initial pose, some joints reached velocities of
28175.7 rad/s in the first iteration, which is com-
pletely unfeasible in practice. This caused an im-
pulse response in Figure 2c at 0 s. The manipu-
lator was only able to converge because dynam-
ical aspects were not taken into consideration in
the simulation and because we used low gains (for
larger gains this usually leads to complete insta-
bility). In this way, the manipulator was able to
recover itself once outside the singular configura-
tion. However, in practice these extremely large
velocities can cause damage to the robot.

5 Conclusion & future work

A mathematical and computational framework for
kinematic control of serial manipulators has been
developed in this work. The issues of manipula-
tor task redundancy and workspace singularities
were undertaken in the controller designs, which
exploited the benefits of the unit dual quaternion
representation. The simulation results have shown
that the proposed controllers are capable of tack-
ling initial and final singular configurations, while
maintaining feasible velocities throughout the tra-
jectory. Moreover, all controllers can be used by
the community as they are available as an open-
source project.

In future works, more challenging controller
designs that consider manipulator joint limits and
more complex geometric tasks will be developed or
adapted for the unit dual quaternion space.
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