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§Escola Politécnica da Universidade de São Paulo

São Paulo, Brazil

Emails: jgurzoni@ifc.org, psantos@fei.edu.br, carlos.roberto@daimler.com,
fgcozman@usp.br

Abstract— This paper presents a probabilistic logical model of traffic rules with the goal to provide high-
level interpretation of the traffic rules regarding lane signalisation in video scenes, as observed from a vehicle’s
viewpoint. The images are provided by a monocular camera attached to a vehicle driving in normal traffic
situations. A low-level computer vision algorithm classifies the type of lane dividers and their relative positions
with respect to the vehicle, then sends the information to be used as evidences by a probabilistic inference engine
that reasons about the vehicle’s location and actions. The inference is accomplished using a first-order knowledge
base formalising right-handed traffic rules. Uncertainties inherent to the sensors are treated within a probabilistic
framework, the Markov Logic Networks, and results are compared to a well-known baseline classifier, the Naïve
Bayes. We evaluate the use of these techniques under real-world traffic situations.

Keywords— Spatial reasoning, Image Understanding, Markov Logic Networks

Resumo— Este artigo apresenta um modelo lógico-probabilístico de regras de trânsito com o objetivo de
fornecer uma interpretação de alto nível sobre faixas de rodagem a partir de cenas de vídeo, tal como observado
do ponto de vista de um veículo. As imagens são fornecidas por uma câmara monocular ligada à um veículo em
condições normais de trânsito. Um algoritmo de visão computacional de baixo nível classifica o tipo de separadores
de pista e as suas posições relativas em relação ao veículo. Em seguida, esta informação é utilizada como evidência
por um mecanismo de inferência probabilística cujo objetivo é determinar as ações do veículo. Esta inferência é
realizada utilizando uma base de conhecimento de primeira ordem representando um subconjunto de regras de
trânsito. Incertezas inerentes aos sensores são tratadas dentro de uma estrutura probabilística, as Redes Lógica
de Markov, e os resultados são comparados com um classificador Naïve Bayes. O uso destas técnicas foi avaliado
em situações de tráfego urbano real.

Palavras-chave— Qualitative Spatial Reasoning, Interpretação de cenas, Redes Lógicas de Markov.

1 Introduction

In this paper, we investigate the use of a prob-
abilistic relational model to bring contextual in-
formation into consideration for the task of inter-
preting the function of lane dividers from videos
obtained on a car in normal traffic situations. The
lane dividers’ position and type (e.g., continuous,
dashed) are extracted by a computer vision system
and sent to a probabilistic inference engine, where
they serve as evidence to infer the location and ac-
tions of the vehicle. To model the traffic rules, a
probabilistic framework with capabilities to deal
with the uncertainties inherent to the sensors and
environment is used, the Markov Logic Network
(MLN) (Domingos and Lowd, 2009). In our pre-
vious work (Souza and Santos, 2011), we present
preliminary results suggesting that Markov Logic
Networks could be used to efficiently encode re-
lational rules representing contextual knowledge

(traffic rules) about the traffic domain, while also
providing the appropriate means to infer the func-
tionality of traffic lanes from visual observation.
However, in (Souza and Santos, 2011) no compar-
ison was presented between the results obtained
from the MLNs with more traditional methods
such as Naïve Bayes. This comparison is the
main contribution of the present paper. Besides
this, the experiments presented in (Souza and
Santos, 2011) were conducted on a preliminary
dataset within which not all of the events were
represented. In the present work, however, the
experiments were conducted on a more complete
dataset containing containing examples of every
event formalised in this work.

2 Related Work

The extent of which MLNs can be applied to the
task of interpreting traffic scenes from video is an



issue that we address in the present work. In this
context, the seminal work of Nagel (Nagel, 2004)
was the first to attempt the automatic descrip-
tion of image sequences from traffic situation us-
ing concepts. On a broader sense, these ideas were
at the starting point of the field called semantic
scene understanding, which aims at abstracting
an image sequence into meaningful units that are
further used to check if an event of interest has
occurred, a survey of this field is given in (Lavee
et al., 2009). In particular, the work presented in
(Brehar et al., 2011) considers the visual classifi-
cation of objects in real traffic scenes and the rep-
resentation of the observed situations by means
of the OpenCyc ontology1. Although this work
considers high-level representation and reasoning
via the Cyc technology, the inferences are deter-
ministic, since no probabilities are assigned to the
domain predicates and rules.

In terms of probabilistic-logic theories for
moving vehicles we can cite the work described
in (Parker et al., 2007) that uses optimisation
methods in order to define the probability about
where a moving objects is located at a given time.
This theory, however, assumes that the observer
is static and has a global viewpoint of the objects,
as the aim of that work is to track objects as seen
from radars.

To the best of our knowledge, the investiga-
tion reported in (Tran and Davis, 2008) was the
first to use Markov logic networks to the task of
event modelling from video sequences. Similar to
the work described in this paper, the authors in
(Tran and Davis, 2008) use probabilistic inference
for querying the scenes from a domain represented
by first-order rules. In these works, scenes from a
static viewpoint observing human actions in struc-
tured scenarios are analysed (e.g. two agents play-
ing basketball); whereas, in the present paper we
consider normal traffic scenes as observed by a
moving vehicle.

Markov logic networks were also used in
(Hensel et al., 2010; Souza and Santos, 2011) to
infer object relations in traffic scenes. In con-
trast to the present paper, the work reported in
(Hensel et al., 2010) assumes a bird’s eye view of
the scenes, leaving for a future work the scene in-
terpretation and reasoning from the viewpoint of
a moving vehicle.

3 Methods

This section presents the two stages of the pro-
posed LAS system: the low-level vision system
that detects the lane dividers condition and the
probabilistic-logic inference engine that reasons
about this information.

1http://www.opencyc.org/opencyc

3.1 Low-Level Vision system

The low-level vision part of the method is based
on an off-the-shelf Hough transform algorithm for
lane-boundary detection (Yu and Jain, 1997).,
which outputs the classification of lane dividers
on the left and right of the vehicle at each cam-
era frame. These lane dividers are classified with
the following types: WContinuous, representing a
white continuous divider; WDashed: representing
a white dashed divider; YContinuous: standing for
a yellow continuous divider; YDashed: that repre-
sents a yellow dashed divider; and, Merge: which
represents the access to enter the road and to de-
part from it.

For every frame, the vision module out-
puts a pair 〈divider(Left, type, status, time), di-
vider(Right, type, status, time)〉, representing the
types of the lane dividers located on the left and
right of the vehicle (where status states whether
the divider is at the sides or under the vehicle,
and time is the frame where the information was
acquired). It is also output by the vision system
whether the vehicle is crossing towards the left or
right (crossingLeft or crossingRight).

Figure 1 presents some frames processed with
this algorithm.

(a) (b)

Figure 1: Snapshots of traffic scenes.

3.2 Markov Logic Networks

A Markov logic network L is a set of formulae Fi
in first-order logic with a weight wi (real number)
attached to each formula. This can be viewed as a
template for constructing Markov networks ML,C ,
where C is a set of constants. The probability
distribution of the domain variables, over possible
worlds x (interpretations of Fi), is given by:

P (X=x) = 1
Z
exp

(∑
i

wifi(x)
)

(1)

= 1
Z

∏
i

φi(x{i})ni(x),

where ni(x) is the number of true groundings of
Fi in x, x{i} is the state of the i-th clique which
has a corresponding feature fi(x) ∈ {0, 1} and
an associated weight wi = logφi(x{i}). Z is a
normalisation factor, also known as the partition
function, Z =

∑
x∈X

∏
i φi(x{i}).



The basic idea of MLN is to extend the innate
determinism of the first-order knowledge bases
(KB), allowing these KBs to deal with probabilis-
tic uncertainty. The weight associated to each for-
mula reflects its strength as a constraint. Formu-
lae with infinite weights rule out worlds in which
they are not satisfied, whereas lower weight for-
mulae make them less probable.

Inference in MLN can be probabilistic or
logical, with complexity #P-Complete and NP-
Complete, respectively (Domingos and Lowd,
2009). Efficient algorithms for both exact and ap-
proximate inference methods, such as the Markov
Chain Monte Carlo (MCMC) or Belief Propaga-
tion, are possible in MLNs.

Learning in MLN can be discriminative or
generative, and the most common algorithm for
both learning and inference is the MC-SAT. The
MC-SAT is a slice sampling MCMC which uses a
combination of satisfiability testing and simulated
annealing to sample from the slice of a distribution
(Domingos and Lowd, 2009). MC-SAT treats de-
terministic or near-deterministic dependencies by
efficiently finding isolated modes in the distribu-
tion, resulting in a fast mixing of Markov chain.

The next section describes the formalisation
of the contextual information about the use of
traffic lane dividers and its application as MLN
formulae.

4 Contextual Information From Traffic
Scenery

Contextual information is injected into the infer-
ence engine through the addition of predicates en-
coding traffic rules related to the use of lane di-
viders in traffic situations. One important char-
acteristic of a lane assistance system is the fact
that the agent of perception is inside the context,
e.g., the point of view of the agent is the same
of the driver. Therefore, the formalisation de-
scribed in this section follows this concept: the
predicates defined below will be always relative to
the driver’s viewpoint.

This work assumes a typed first-order lan-
guage, whose sorts are type, way, lanepos, status
and time. The domains of these sorts are defined
as follows:

• type ∈ {YContinuous, WContinuous,
YDashed, WDashed, Merge}, representing
the divider’s type (as mentioned in Section
3);

• way ∈ {One, Two} that represents the road’s
allowed traffic directions, i.e. a road may be
either a One or a Two-way road;

• lanepos ∈ {Left, Centre, Right}, representing
vehicle’s or lane’s position by the constants

Left, Centre or Right. The vehicle posi-
tion is given relative to the road (e.g., “the
vehicle is on the centre lane”), whereby Cen-
tre is considered every position that is not in
the extreme left or right lanes. The divider
position is relative to the vehicle (e.g., “the
divider is on the left side of the vehicle”);

• status ∈ {Sides,Under}, that indicates if a
divider is Under the vehicle (e.g., during a
crossing) or at the vehicle Sides;

• time, represented as t, is defined on the set of
frames obtained by the vision apparatus.

Using these terms, a number of predicates were
defined (described below).

• divider(lanepos,type,status,t) : represents the
divider identification with lane position Left,
Centre, Right, its type (Dashed, Continuous),
its status (Sides, Under), at a time t. Ground
facts of divider/4 are output by the vision
algorithm at every frame;

• carRelPos(lanepos,t): represents the car’s
relative position with respect to the road
(lanepos);

• crossingLeft(t): represents that the vehicle is
crossing to the left lane;

• crossingRight(t): represents that the vehicle
is crossing to the right lane;

• emergencyLane(t): represents that the vehi-
cle is on the emergency stop lane;

• wrongWay(t): represents that the vehicle is
on the wrong way of the road;

• roadWay(way,t): represents the road’s al-
lowed traffic directions.

With these predicates, MLN formulae were con-
structed to encode traffic rules about right-handed
traffic and the knowledge about the use of lane di-
viders, as shown in the formulae below (first pre-
sented in (Souza and Santos, 2011)). It is worth
pointing out that, initially, the formulae below are
only first-order logical sentences without weight.
As described in the next section, the weights were
further learnt from the training data using MC-
SAT on the related Markov network.

In the formulae below we assume that con-
stants are written in uppercase letters, variables
in lowercase and that, unless explicitly written,
every free variable is universally quantified.

1. If the vehicle perceives a yellow continuous
divider under it or there is one at its right
side, it is doing a prohibited manoeuvre:
divider(Left, Y Continuous, Under, t)∨
divider(Right, Y Continuous, sides, t)⇒



wrongWay(t)∧
prohibitedManoeuvre(t) ∧ roadWay(Two, t)∧
carRelPos(Left, t) ∧ ¬carRelPos(Centre, t)∧
¬carRelPos(Right, t) ∧ ¬emergencyLane(t).

2. If there is no evidence of a two way road,
consider it to be a one way road, where p is
a variable for position and s is a variable for
status:
¬divider(p, Y Continuous, s, t)∧
¬divider(p, Y Dashed, s, t)⇒
roadWay(One, t) ∧ ¬roadWay(Two, t).

3. If there is a yellow continuous or a yellow
dashed divider at any position, the road has
two ways:
divider(Left, Y Continuous, s, t)∨
divider(Left, Y Dashed, s, t)∨
divider(Right, Y Continuous, s, t)∨
divider(Right, Y Dashed, s, t)⇒

roadWay(Two, t) ∧ ¬roadWay(One, t)∧
carRelPos(Left, t) ∧ ¬carRelPos(Centre, t)∧
¬carRelPos(Right, t) ∧ ¬emergencyLane(t).

4. If the left divider is white continuous and the
right divider is white dashed, the road has
one way and the vehicle is on the left lane:
divider(Left,WContinuous, sides, t)∧
divider(Right,WDashed, sides, t)⇒
roadWay(One, t) ∧ ¬roadWay(Two, t)∧
carRelPos(Left, t)∧
¬carRelPos(Centre, t) ∧ ¬carRelPos(Right, t)∧
¬prohibitedManoeuvre(t) ∧ ¬wrongWay(t).

5. If the divider is dashed on both sides of the
view, the vehicle is on the centre of the road:
divider(Left,WDashed, sides, t)∧
divider(Right,WDashed, sides, t)⇒
carRelPos(Centre, t) ∧ ¬carRelPos(Left, t)
∧¬carRelPos(Right, t) ∧ ¬wrongWay(t)∧
¬crossingLeft(t) ∧ ¬crossingRight(t)∧
¬prohibitedManoeuvre(t)∧
¬emergencyLane(t).

6. If the left divider is not white dashed and the
right is white dashed, the vehicle is on the left
lane:
¬divider(Left,WDashed, sides, t)∧
divider(Right,WDashed, sides, t)⇒
carRelPos(Left, t) ∧ ¬carRelPos(Centre, t)∧
¬carRelPos(Right, t) ∧ ¬crossingLeft(t)∧
¬crossingRight(t)∧
¬prohibitedManoeuvre(t)∧
¬emergencyLane(t).

In the following x and y are variables for lane
type.

7. If the divider is yellow dashed and it is at
the right side of the vehicle, the car is on the
wrong way. It is not a prohibited manoeuvre
because this condition is permitted during an
overtake manoeuvre:

divider(Right, Y Dashed, sides, t)∧
divider(Left, x, sides, t)⇒ wrongWay(t)∧
carRelPos(Left, t) ∧ ¬carRelPos(Centre, t)∧
¬carRelPos(Right, t) ∧ ¬crossingLeft(t)∧
¬crossingRight(t)
∧¬prohibitedManoeuvre(t)∧
¬emergencyLane(t).

8. If the left divider is white dashed and the
right divider is white continuous or merge,
the vehicle is on the right lane:
(divider(Right,WContinuous, sides, t)∨
divider(Right,Merge, sides, t))∧
divider(Left,WDashed, sides, t)⇒
carRelPos(Right, t)∧
¬carRelPos(Centre, t) ∧ ¬carRelPos(Left, t)∧
¬wrongWay(t) ∧ ¬crossingLeft(t)∧
¬crossingRight(t) ∧ ¬emergencyLane(t).

9. If the vehicle is over a right divider or over
a left divider, with a right divider at its
sides, the car is crossing to the right (and
analogously for crossing to the left). This
prevents one predicate overlapping with
another when, as given by the vision system,
the divider changes from left to right (or
vice-versa) whenever it crosses the middle of
the vehicle’s field of view:
divider(Right, x, Under, t) ∨
(divider(Left, y, Under, t)∧
divider(Right, y, sides, t))⇒
crossingRight(t) ∧ ¬crossingLeft(t).

divider(Left, x, Under, t) ∨
(divider(Right, y, Under, t)∧
divider(Left, y, sides, t))⇒
crossingLeft(t) ∧ ¬crossingRight(t).

The negation of some predicates on the for-
mulae above denotes unchanged characteristics of
the domain given the evidences.

In the next section we show results of the ap-
plication of the model on real traffic situations.

5 Results

The approach described in this paper was eval-
uated using 3600 frames, half of which composed
the training set and the other half the test set. All
the processing (image processing, weight learn-
ing and probabilistic inference) was accomplished
on a laptop with a processor AMD Turion X2,
2200MHz and 4Gb of RAM.

The weight learning for each formula was
executed with MC-SAT algorithm (Domingos and
Lowd, 2009) on the training set. MC-SAT was
also applied in the inference, whereby the output
from the vision system was used as evidences
with which the following predicates were queried
within the domain’s MLN: carRelPos(Centre, t),
carRelPos(Left, t), carRelPos(Right, t),



crossingLeft(t), crossingRight(t), emerge-
ncyLane(t), wrongWay(t), roadWay(One, t)
and roadWay(Two, t), for every frame t in the
test set.

The ground truth was manually labelled, con-
sidering that an event lane crossing occurs every
time the inferior extremity of a divider appears at
the bottom line of the frame (as also inbuilt in the
vision system during data acquisition). Crossing
a divider was kept in true state until the divider
changes the side with respect to the vehicle (i.e.,
when it crosses the frame centre). We have used
individual decision thresholds for each predicate
queried that were found empirically.

In order to evaluate the model described in
the previous section, we executed the inference
engine against the test set and measured the ac-
curacy (Acc), sensitivity (Sens), precision (Prec)
and specificity (Spec) of the responses. The re-
sults are shown in Table 1 .

The same training and test sets were used to
train and execute a naïve Bayes classifier with four
features: the Left and Right divider types (WCon-
tinuous, WDashed, YContinuous and YDashed)
and their status (Ok and Under). These features
were all modelled as multivariate multinomial dis-
tributions. Results of the naïve Bayes classifier
execution are shown in Table 2.

Table 1: Results obtained from probabilistic in-
ference on the domain’s MLN

Predicate Acc Sens Prec Spec
(%) (%) (%) (%)

carRelPos(Centre,t) 91.0 98.9 75.2 88.1
carRelPos(Left,t) 93.9 93.3 89.5 93.3

carRelPos(Right,t) 90.8 64.4 87.2 97.6
crossingLeft(t) 87.3 74.6 65.3 90.4

crossingRight(t) 76.4 89.2 41.3 73.8
emergencyLane(t) 80.9 78.8 45.9 81.4

wrongWay(t) 98.0 79.3 89.6 99.3
roadWay(One,t) 96.7 99.9 95.4 89.6
roadWay(Two,t) 98.4 99.8 95.3 97.7

Mean value 91.3 86.5 76.1 91.1
Standard deviation σ 7.2 12.1 19.6 7.9

Table 2: Results obtained from the Naïve Bayes
classifier

Predicate Acc Sens Prec Spec
(%) (%) (%) (%)

carRelPos(Centre,t) 89.2 98.8 83.8 78.3
carRelPos(Left,t) 96.8 93.6 80.9 97.2

carRelPos(Right,t) 87.7 66.6 97.9 99.2
crossingLeft(t) 89.2 77.7 51.5 90.7

crossingRight(t) 89.4 93.2 61.9 88.7
emergencyLane(t) 97.3 87.2 90.5 98.7

Mean value 91.6 86.2 77.8 92.1
Standard deviation σ 4.3 12.0 17.7 8.1

6 Discussion

The results of the queries to the domain’s MLN,
shown in Table 1, indicates that the system was
successful on reasoning about the relative position
of the car, about the vehicle’s actions (whether it
is crossing to the emergency lane, or crossing to
the left or right of a lane) and the functionality of
the road it is driving on (whether a two-way or a
one-way road).

The average values obtained with the prob-
abilistic inference were around 91% for accuracy,
86% for sensitivity, 76% for precision, and 91%
specificity. attesting for the success of using a
probabilistic first-order representation for the task
of image interpretation from traffic situations.

The results from the naïve Bayes classifier,
though, indicate that, despite its lack of capabili-
ties to model dependencies among predicates, its
performance was very close to the one of the pro-
posed MLN. This is not surprising when one anal-
yses the defined MLN’s structure (defined by the
formulae shown in Section 4). Mostly, the logic
rules show dependencies only among the divider’s
type and status, which is exactly the structure of
our naïve Bayes classifier. Therefore, the MLN
used in this work is implementing a naïve Bayes
model. This fact leads to the question of why
should one go into the burden of defining a first-
order model, when a simple naïve Bayes would
do the job. The answer relies on the represen-
tational power of a first-order language, such as
the Markov Logic Network, which allowed us to
represent simple, common-sense, facts about our
knowledge on the use of traffic lanes and these
facts become automatically the classifier’s struc-
ture. The naïve Bayes model was obtained from
the MLN structure due to the simplified appli-
cation domain: the interpretation of traffic-lane
function is just a subset of the far more com-
plex domain of traffic scene interpretation. Once
we extend this work towards the interpretation
of the behaviour of the other agents, the first-
order model should naturally lead to more com-
plex Markov network structures.

It is also worth mentioning that the advan-
tage of an MLN model, in contrast to a non-
probabilistic logical model, is that the set of rules
defining the knowledge base does not need to be
complete, or even entirely correct. Such impre-
cisions in the formulae will be considered within
the probabilities assigned to them. Besides, as
these probabilities are learnt from real data, they
will also account for user-specific interpretations
of lane functions.

Besides the MLN model, we attempted to
model the traffic lane domain using PRISM (Sato
and Kameya, 2008), a well-known probabilistic
logic programming language. However, unlike the
MLN, PRISM’s learning algorithm did not grace-



fully accept the noisy examples present in the
training data. Its explanation-search parameter
learning algorithm tries to find explanations to all
examples in the database, thus requiring either
the explicit modelling of all possible sensory fail-
ure conditions encountered in the data or the def-
inition of a failure predicate that would represent
these situations. To the best of our knowledge,
the difficulties in defining a failure predicate in
PRISM prevent the direct use of this tool to our
domain.

The vision system used in this work did not
have an homogeneous performance with respect to
the type of lane dividers it could detect, what has
produced a higher than normal rate of false posi-
tives. A more robust vision module was not pur-
sued as a mean to to verify to what extent query-
ing the developed Markov logic network would
give meaningful results under this kind of sen-
sor uncertainty. For most of the experiments, the
MLN dealt with the vision classification problems,
except in the case of the yellow dashed divider.
This was because the misclassification rate at cer-
tain points in the video became indeed too high,
with correct detection under 50%.

Although the vision system alone is also
capable of interpreting the vehicle actions
crossingLeft and crossingRight, this informa-
tion was not used during the inference procedure
(which involved only the formulae described in
Section 4 and the lane classification from the vi-
sion system). However, when comparing the in-
terpretation of these actions as obtained by the
probabilistic inference and the vision alone, we
noticed that the probabilistic inference had con-
siderably better sensitivity (around 74% for cross-
ingLeft and 89% for crossingRight) than the vision
system alone (of around 54% for crossingLeft and
51% for crossingRight). The overall results from
the inference procedure also presented high val-
ues for accuracy, precision and specificity for the
remainder predicates.

7 Conclusion

This paper proposed a probabilistic logic formal-
isation of a number of rules related to the use of
lane dividers in right-handed traffic. These rules
provided the structure of a Markov logic network
(MLN) that was used for the inference of the rel-
ative vehicle’s position in the road, the vehicle’s
actions and the functionality of the road lanes.
Evidences used in the inference procedure were
provided by a simple off-the-shelf computer vision
system that provided the classification of the road
lanes 15 times per second. The results obtained
from MLN inference were compared with the re-
sults of a simple Naïve Bayes classifier. From this
comparison we conclude that both inferences have
similar behaviour wrt accuracy, sensibility, preci-

sion and specification. The advantage of a rela-
tional model, in this case, is its representational
power, which allows the representation of simple,
common-sense, facts about our knowledge on the
use of traffic lanes whereas these facts become au-
tomatically the classifier’s structure.
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