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Abstract—A Model Based Predictive Control was applied to
temperature control of a thermoelectric fluid cooling system in
order to attain performance requirements considering equipment
operational limits and standard brochure. A phenomenological
linear model was obtained and its parameters were identified
by least squares algorithm. Simulation and experiments showed
satisfactory compromise by simulation capability and residue
characteristic criterion. The closed loop system behaviorallowed
energy saving in standby temperature regulating compared
to electronic thermostat and achieved ENERGYSTAR energy-
efficiency criteria certification requirements infeasible for tradi-
tional regulation.

I. I NTRODUCTION

The thermoelectric cooling technology has been widely
used in small refrigerators, beer chillers and wine cellars[1].
However, many commercial water cooler models still employ
heat pumping compression principle based on motor compres-
sors, condensers, expansion devices, evaporators and electro-
mechanical thermostats like US2912142 [2] first dispenser
patent. Moreover, the compression circuit replacement for
thermoelectric modules provides benefits like absence of mov-
ing parts and noise, reduced size and weight, high reliability
and repeatability, and low power consumption that makes the
thermoelectric technology an alternative to traditional motor
compressors [3].

Feedback control systems emerge as solution to thermoelec-
tric water coolers temperature regulation problem: the inner
temperature dynamic modeling and system identification are
tools for controller tuning based on process model [4]. More
sophisticated controllers design may accomplish the temper-
ature regulating with energy saving, economic components
design and unfeasible specifications for bistable control based
on inherited compression principle [5].

Therefore, this research original technical result is the
thermostat temperature based regulation replacement for a
model based predictive control design such that the new
strategy allows the system achieving specified requirements
in ASHRAE/ANSI18: Methods of Testing for Rating Water
Coolers with Self-Contained Mechanical Refrigeration [6]and
attending ENERGYSTAR [7] energy-efficiency criteria.

This paper has been organized as follow: in section 2 the
thermoelectric cooler system has been approached; in section
3 the dynamic model has been modeled; in section 4 the model
parameter identification experiment is characterized; in section

5 the model based predictive control is designed; in section6
the results are presented; the conclusions are made in section
7, followed by references.

II. T HERMOELECTRICCOOLER CHARACTERIZATION

The experimental bench Fig. 1 allows cooling performance
analysis by inner reservoir water temperature, room tempera-
ture, electric current and thermoelectric module voltage.

Fig. 1. Experimental bench.

The refrigeration system comprises the thermoelectric
cooler, data acquisition, processing and control, communica-
tion module and power drive as Fig. 2:
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Fig. 2. Modules integration.

The thermoelectric cooler is permanently water occupied
reservoir surrounded by polyurethane foam. Internal heat sink
fins are in thermal contact with the fluid and its base is linked
on Peltier module cold face. External heat sink base is on
module hot face and its fins are in room air thermal contact.



III. D YNAMIC MODEL

The process dynamic behavior is governed by thermal and
electrical agents interaction. The electric current determines
the thermal power pumped by the module, while the material
properties and thermodynamic design defines the temperature
in each region [8]. Model description considers the fluid, the
module faces and thermoelements energy balance. Boundary
conditions, approximations and linearization are defined and
temperature is carried out at concentrated parameters [9].

A. Thermodynamic System Modeling

The model dynamics equations consider heat flow through
masses coupled to module and thermoelements mass. The
thermal loadQL is the heat pumped by the thermoelectric
module. Eq. (1) models thermoelements energy balance:

QL −Qk − IαpnTL = (mlcl +mccc)
dTL

dt
(1)

Qk = −kA
∂T (x, t)

∂x

∣
∣
∣
∣
x=0

whereQk is the cold face conduction heat absorbed;IαpnTL

is the absorbed Seebeck effect energy;T (x, t) is the one-
dimensional temperature distribution function in thermoele-
ments;k is the thermoelectric material thermal conductivity;
A is the thermoelements cross sectional sum area;ml is the
internal heat exchanger mass;cl is the internal heat exchanger
specific heat;mc is the thermoelements mass andcc is the
thermoelements specific heat. Eq. (2) models external heat
exchange energy flow:

IαpnTH +Qo −Qc = (mfcf +mHcH)
dTH

dt
(2)

Qc=hAF (TH − Tamb);Qo=−kA
∂T (x, t)

∂x

∣
∣
∣
∣
x=L

whereQo is the thermal energy conducted to thermoelements
hot surface;Qc is the convection heat transmitted from exter-
nal heat sink to room;IαpnTH is Seebeck effect hot face dis-
sipated energy;Tamb is room temperature;h sink convection
coefficient;AF convection effective area;mf external heat
exchanger mass;cf external heat exchanger specific heat;mH

thermoelements mass andcH thermoelements specific heat.
The Fourier Equation (3) describes thermoelements energy
flow:

k
∂2T (x, t)

∂x2
−

τ
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I
∂T (x, t)

∂x
+

ρ

A2
I2 = ACγ

∂T (x, t)

∂t
(3)

where the boundary conditions are given byT (0, t) = TL(t)
andT (L, t) = TH(t). Eq.( 3) describes Peltier, Thomson and
Joule effects, whereτ is the Thomson coefficient;ρ electrical
resistivity average;C is the thermoelements specific heat and
γ is the thermoelements specific mass.

B. Model Linearization

Model Linearization is based on small signals analysis. The
magnitudes are presented as steady state value added to a per-
turbation around ite.g.I(t) = Ī + Ĩ(t) for electric current. It
is performed due materials properties temperature dependence.
Transfer function considers only perturbed signals.

C. Process Transfer Function

The transfer functions from̃QL(s), T̃amb(s) and Ĩ(s) to
T̃L(s) leads second order systems with different zeros and
gains for each input variable. SincẽQL(s) is the heat flow to
module cold face in a generic way, it is modified to represent
the cooling fluid energy flow.

The heat pump draws energy from fluid via internal heat
sink by convection, such that the energy flow entering in the
system is associated with convection from ambient to water
through the insulator and sensitive heat necessary to water
temperature change. Water mass was added to system leading
a third order system related to the thermal capacity of the two
heat sinks and the cooled fluid.

In addition the room temperature variation are strongly
attenuated by the thermal insulator (T̃a(s) = 0), ie, considered
as model disturbance.

IV. M ODEL PARAMETER IDENTIFICATION

System identification techniques are used to provide a
parameterized model that simulates the fluid temperature be-
havior by applying direct current on specified linear operation
region [10]. The water reservoir temperaturẽTf (t) can be
described by discrete transfer function Eq.(4) with sampling
periodTs; aj = aj(Īo) andbk = bk(Īo) are model parameters
asĪo function. The excitation current is̃Io ande(t) represents
unmodeled dynamics:

T̃f (t) = −

m∑

j=1

aj T̃f (t− jTs) +

n∑

k=1

bk Ĩo(t− kTs)+ e(t) (4)

Identification experiment is carried out disturbing system
current Ĩo = ±0.75A around the bias current̄I0 = 1.00A,
which corresponds to ANSI18 maximum water temperature
on controlled room temperature (T̄amb = 27.50± 0.25oC).

A. Model Structure and Prediction Error

Eq. (5) describes a linear model structure for one step ahead
predictor:

T̃f (t|t− 1, θ(Īo)) = φ(t− 1)T θ(Īo) (5)

whereφ(t − 1) = [−T̃f (t− 1) . . . − T̃f(t−m) Ĩo(t−
1) . . . Ĩo(t − n)] )] is the regressors vector andθ(Īo) =
[a1 . . . am b1 . . . bn] ] is the parameters vector associated to
Īo and have its order limited tom+ n based on phenomeno-
logical model order. Parameter vectorθ(Īo) is determined by



one step ahead prediction error cost functionJi as Eq. (6):

Ji =
N∑

t=1

[

Texp(t)− T̃f (t|t− 1, θ(Īo))
]2

(6)

minimization according to Eq. (7):

θ(Īo) = arg min
θ(Īo)∈D

Ji (7)

whereTexp(t) is the experimental value,N is total experiment
samples andD limits the parameter vector search space to
m+ n.

B. Identification Experiment Design

The identification experiment consists in applying a six
order pseudo-randon binary sequence (PRBS) current signal
added to bias current selected based on discrete model order
limit [10].

Additional PRBS characteristics are defined through system
step response as Fig. 3:
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Fig. 3. Electrical current step response.

Approaching system by first order equivalent, its time
constant is4.20h and reaches steady state after20h. Consid-
ering interval between samplesTb = 25min and excitation
signal periodTi(t) = 26.25h. Three excitation signal periods
response are shown as Fig. 4:
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Fig. 4. PRBS reponse.

C. Parameter Identification

The first half experimental data was used for identification
purpose, while the second half is used for model validation.
The search space is investigated due the non direct equivalence

between zeros in continuous and discrete models [11], where
1 ≤ m,n ≤ 3 andm ≤ n describes a proper system.

The Final Prediction Error Akaike -FPE function was
used for indexes the relationship between model order and
the residue variance. Lower value corresponds to the most
appropriate model based on the error correlation to explainthe
experimental data by simulation. It envolves the loss function
V , the number of estimated parametersd = m + n and the
number of available samples for validationN :

FPE = V

(
1 + d/N

1− d/N

)

;V = det

(

1

N

N∑

k=1

ε(k, θ̂)ε(k, θ̂)T

)

consideringd ≪ N them FPE = V (1 + d/N), where
ε(k, θ̂) is the simulation error committed for k-th sample.

Apart fromFPE, it is used theFIT index which calcules the
output experimental data ratio explained by model simulation:

FIT = 1−

√
√
√
√

∑N

k=1[T̃f (k)− Texp(k)]2
∑N

k=1[Texp(k)− T̄exp]2

The model that maximizesFIT and minimizesFPE is
adopted as the best one to represent the process: the criterion
relates compromise between simulation capability and residue
correlation properties. The process can be modeled by a first
order discrete transfer function withTs = 300s:

H̃(z, Īo = 1.00A) = −
0.179z−1

1− 0.9772z−1
(8)

The residual analysis is used to check the experimental value
characteristics not explained by the simulation shown in Fig. 5:

Fig. 5. Whiteness Test:̃H−1(z, Īo) filtered residue autocorrelation.

The residue correlation uniformity allows affirming that itis
a white noise, as assumed in Eq 4, while the periodicity is due
to dynamic room temperature bistable control not explainedby
H̃(z, Īo = 1.00A) as Fig 6:
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Fig. 6. Bistable room Temperature Control.

Models are listed on table I:

A second experiment was carried out in order to assess
model simulation capacity as shown in Fig 7. The PRBS signal
was realized with orderb = 8 and Tb = 7 minutes, where



TABLE I
ORDER, INDEXES AND REGRESSORS

mnFIT FPE ϕ
1 1 86.473.07[-0.9772 -0.1790]
2 1 85.663.47[-1.3260 0.3409 -0.1290]
2 2 86,093.26[0.0365 -0.9833 -0.2745 -0.2903]
3 1 85.463.56[-1.0280 -0.0987 0.1444 -0.1561]
3 2 85.933.34[-0.2891 -0.8557 0.1777 -0.1094 -0.1837]
3 3 86.303.16[0.0246 -0.2618 -0.7035 -0.0780 -0.2283 -0.2226]

Ti(t) = 29.75h and has enlarged spectral band:Texp is the
fluid temperature andTsim is the simulated temperature.

Time [Hour]

sim

.

.

Fig. 7. PRBS test:FIT = 85.72 andFPE= 4.44.

V. M ODEL BASED PREDICTIVE CONTROL DESIGN

The model based predictive control - MBPC system struc-
ture adopted is shown in Figure 8. MBPC strategies uses
explicit model to predict the plant outputs and calculate future
inputs by cost function optimizing that considers the control
objectives, reference trajectory and constraints [12].

Plant
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Optimizer

Model

Predicted Outputs
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Input

Cost Function Constraints

Reference
Trajectory

-

+

Fig. 8. MBPC structure.

The cost functionJ(N1, N2, Nu, λ) is given by:

J=

N2∑

k=N1

[w(t+ k)− ŷ(t+ k|t)]2 + λ

Nu∑

k=1

[△u(t+k−1)]2 (9)

whereŷ(t+k|t) is thek steps ahead output prediction based on
given t instant information,△u is the control signal variation,
△ = 1 − z−1 is the difference operator,w is the future
trajectory reference,λ is the weighting control effort,Nu is the
control horizon,N1 andN2 define the prediction horizon. The
plant is described by Controlled Auto-Regressive Integrated
Moving Average model:

A(z−1)y(t) = z−dB(z−1)u(k − 1) +
1

△
ε(t) (10)

whereε(t) is white noise. The future outputs are accomplished
by Diophantine equation:

1 = Ek(z
−1)△A(z−1) + z−kFk(z

−1) (11)

applied to plant model:

y(t+k) = Fky(t)+EkB(z−1)△u(t+k−1)+Ekε(t+k) (12)

omitting the argument(z−1). Since E[ε(k)] = 0 and
E[ε(k)ε(j)] = 0, ∀k 6= j, whereE[.] is expectation operator:

Ek(z
−1)B(z−1) = Gk(z

−1) + z−kG′
k(z

−1) (13)

optimum plant output prediction is given by:

ŷ(t+k|t) = Gk△u(t+k−1)+Fky(t)+G′
k△u(t−1) (14)

writing J in matrix notation:





ŷ(t +N1|t)
ŷ(t +N1 + 1|t)

...
ŷ(t +N2|t)






︸ ︷︷ ︸

Ŷ

=






GN1

GN1+1

...
GN2






︸ ︷︷ ︸

G

△u +






FN1

FN1+1

...
FN2




y(t)+







G′

N1

G′

N1+1

...
G′

N2






u(t−1)

︸ ︷︷ ︸

f

where△u corresponds to the stacking△u = [△u(t)△u(t+
1) . . .△u(t+Nu−1)]T . For reference trajectoryW = [w(t+
N1)w(t+N1+1) . . . w(t+N2)]

T andGN1+i are polynomials:

J = (W − Ŷ )T (W − Ŷ ) +△uT
λ△u

=
1

2
△uT

H△u + b
T△u + f0

where,

H = 2(GG
T+λI); b

T = 2(f−W)TG; f0 = (f−W)T (f−W)

for each discretization period a Quadratic Programming Prob-
lem is written:

△u :
minimize 1

2△uTH△u + bT△u + f0
subject to R△u ≤ l

for only control signal amplitude restrictions:

R =

[
T

−T

]

e l =

[
I(umax − u(t− 1))
I(u(k − 1)− umin)

]

whereT is a lower triangular matrix,I is an identity matrix,
umax andumin are the upper and lower control signal limits
[13].

Due receding control strategy is applied to process only first
element of△u:

u(t) = △u(t) + u(t− 1)

ie, once obtained the control sequence△u, is calculated the
input signal to be applied to plant based only on△u(t), it
is updating output and input signal information and solves
optimization problem again. For all experiments presented,
only the first order parameterized model is used for output
plant predictions and control tuning is fixed asN1 = 1,
N2 = 50, Nu = 48, umax = 3, umin = 0 and λ = 45 as
[14].

Fig. 9 presents fluid temperatureTf dynamic behavior
as reference tracking and regulation on not controlled room
temperatureTamb at closed loop operation within the linear
region.
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Fig. 9. MBPC: linear region.

The experiment illustrated in Fig. 10 exposes the reference
tracking and regulation, expanding temperature excursionout-
side linear limits and determines the minimum temperature
reached by saturating control signal.
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Fig. 10. MBPC: saturating control sinal.

The water density anomalous behavior is shown in Figure
11. In this case, the water density has non-linear behavior
around4oC [15] generating convection currents differing in
the control volume, which represents an economic limit to the
practical system. Additionally, the experiment characterizes
the ability to regulate at6oC from the nonlinear region.
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Fig. 11. MBPC: strong non linearity.

Fig. 12 presents MBPC regulation mode performance when
the system is disturbed by draining180ml of reservoir water
and Fig. 13 presents results for the same experiment for
bistable control. After12h, four 180ml portions each every
15min were drained with volume replacement at room tem-
perature. The experiment is carried out in order to evaluatethe
system cooling capacity according to normative criteria [6].
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Fig. 12. MBPC: disturb rejection.
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Fig. 13. Thermostat: Disturb Rejection.

As soon as disturbance was detected, the control signal
comes into saturation, with the benefit of ensuring fewer
oscillations, lower overshot and the same peak temperature
as bistable control. Comparing experiments results shown in
Figs. 12 and 13, the time for disturbances rejection and cooling
capacity are equivalent for both methods.

VI. RESULTS

The experiments reported in Figs. 14 and 15 are performed
in order to evaluate the power consumption over24h period
for ENERGYSTAR certificate criteria set-point temperature
regulation [7] as table II:

TABLE II
ENERGYSTAR ENERGY-EFFICIENCYCRITERIA.

Water Cooler Category Standby Energy Consumption
[KWh/day]

cold only unit ≤ 0.16
hot and cold unit ≤ 1.20

Adapted from [7].
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Fig. 14. Electrical energy consumption at10oC: thermostat.

Table III presents the results related to the experiments
reported in Figs. 14, 15, 16 and 17 to calculate standby energy
consumption.
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Fig. 15. Electrical energy consumption at10oC: MBPC.
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Fig. 16. Electrical energy consumption at6oC: thermostat.
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Fig. 17. Electrical energy consumption at6oC: MBPC.

TABLE III
ENERGY CONSUMPTION×ENERGY-SAVING .

Energy Consumption[KWh/day]
Temp [oC] Thermostat MBPC Energy-Save[%]

6 0.46 0.30 34.22
10 0.35 0.15 55.82

The MBPC system provides temperature control enabling
requirements for energy consumption as ENERGYSTAR cri-
terion, consuming0.15KWh/day at 10oC temperature reg-
ulation. The goal is not achieved for thermostat mode that
requires0.35KWh/day to regulation. In addition to achieving
the requirements for certification, the MBPC allows a saving
of 55.82% in electricity consumption over thermostat.

The MBPC allows saving34.22% in energy consumption
compared bistable control at6oC. It is the minimum saving
offered by this new control strategy consuming0.30kWh/day
compared to0.46KWh/day consumed by the bistable control.

The0.30KWh/day consumption at6oC minimum set-point
on MBPC mode is less than the0.35KWh/day required for

thermostat mode operate at10oC. The comparison ensure that
MBPC technique allows full range operating energy savings.

VII. C ONCLUSION

The thermoelectric cooling system was modeled around
ANSI18 standard temperature specification. The phenomeno-
logical model was used to define the search space regressors
vector for discrete model obtained through system identifica-
tion technique.

The bistable controlled room temperature dynamic was
noted in residue auto-correlation, since this is not explained
by first order model considering the environment influence as
model disturbance.

The MBPC tuning enables the system achieving equivalent
performance to thermostat control and ANSI18 operational
limits and performance requirements.

The control design proposed ensures disturbance rejection
as room temperature variations and room temperature water
replacement when its reservoir was drained. The methodology
ensures energy-saving regulation throughout the operating
range6-10oC.

The MBPC design enables achieving requirements for EN-
ERGYSTAR Certified not feasible to bistable control project.
The results encourage the hardware implementation for em-
bedded control system.
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