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Abstract—The kinematics of an articulated robot is of extreme importance in robotics since it studies the position of its end 
effector and links. For the direct kinematics is used geometrical methods that depend on the robotic structure for applications. There 
are several methods to describe the geometry of robots, one is the well-stablished D-H notation, used successfully in cases of serial 
chain robots. However, this has its limitations as robotic systems become more complex (that is the case with closed chains or 
bifurcated). One such disadvantage relates to take this model parameters with reference to the previous link. Likewise this same 
model has a singularity when two consecutive axis are parallel or approximately parallel. In this case the parameters di of 
homogeneous transformation which provides the relationship between these axis are linearly dependent making the model 
incomplete. Due to these limitations, it was proposed the Sheth-Uicker method and the Khalil-Kleinfinger method. The aim of this 
paper is to extend the D-H notation creating a new reference system for the case of brachiation robot, this consisting of two arms 
and a body, which makes a bifurcated robot. Then as goal we have an extension of the D-H model, consisting of a recursive 
modification adapting it to the case of bifurcated robots in a way to make the kinematic modeling of robotic systems for easier 
understanding. 
Keywords—Kinematics Model, Devanit-Hartenberg,Brachiation Robot. 
 

1. Introduction 

The kinematics of a robot manipulator is of extreme 
importance in robotics, since it studies the position of the 
effector and ligaments. When it comes to position, we are 
referring both to position itself as well as the orientation of the 
structure. There have been two types of kinematics, the direct 
kinematic where you want to find the position and velocity of 
the effector for a given position of the joints (this will be 
addressed in this work) and inverse kinematics, where we 
have the position and velocity of the effector and want to find 
the positions and velocities of the joints. For this it is 
necessary to use geometrical methods that depend on the 
robotic structure. There are several methods to describe the 
geometry of robots with open-chain mechanisms, one of them 
is the famous Denavit-Hartenberg notation used very 
successfully in the case of linear chains of robots1              

(Aracil, 1997), (Craig, 1955), (Rosário, 2005) though this 
notation has its limitations in relation to branched chain 
robots2, so other methods are needed for obtaining the 
kinematic model in these cases. For example, it is impossible 

to use D-H notation in case of closed loop robots, and note 
even in the case of tree structure (Etienne, 1986). A solution 
for the tree structure cases is to use double subscripts but 
becomes confusing when used in robotic systems with n 
branches or n bifurcation. Note that there is a subtle difference 
between forking and branching. The tree structure robots or 
branched chain robots is a connection of the multiple open-
loop serial robots and it has a link which connects more than 
two links (called a connection link) (Kanzaki, 1991). And 
robotic systems are bifurcated ones that we have a joint where 
two links out. Because of these limitations on the use of the 
Denavit-Hartenberg method, the Khalil-Kleinfinger method 
has been proposed. However the K-K model does not satisfy 
the problem of bifurcated robots. The aim of this paper is to 
extend the Denavit-Hartenberg notation for the bifurcated 
robots, where the main objective is to obtain a recursive 
model3 to make the kinematic modelling of bifurcated robotic 
systems simpler. 

1It is defined as a sequence of links and joints, where there is a link between 
two joints. 
2It is derived from the serial chain and presents a structure with various. 
 3The recursive functions, which form a class of computable functions, take 
their name from the process of recurrence or recursion. In its most general 
form numerically the recursion process is to define the value of a function 
using other values of the same function.  

 



2 The Devanit-Hartenberg Notation 

The time course of the coordinates of the joints of a robot 
model represents the kinematic model of the three-
dimensional system. Denavit and Hartenberg proposed 
translational and rotational relationships between adjacent 
articulated parts for mechanical manipulators. They used a 
matrix method, this method gives a coordinate system for 
each joint of the structure. Transformation matrices between 
these coordinate systems are designed and attached to their 
joints (Aracil, 1997). The D-H notation is based on the fact 
that to determine the relative position of two lines in space, 
only two parameters are needed. Therefore, if we need two 
parameters to define the relative position of two lines in space, 
then to define the relative position of two coordinate systems 
requires four parameters. It is interesting to note that this 
notation only deals with only two links together, and indeed 
the application of the D-H for robots with links with more 
than two links together is difficult and leads to ambiguities 
(Etienne, 1986). 
The most critical problem of this notation is that it is 
impossible to represent branching structures simply, in this 
case there is the problem with the bifurcated robot composed 
of three links, given in Fig. 1 (Oliveira, 2008). 

 
Fig. 1.  Brachiation Robot. 

 
2.1 Summary 

We summarize the above procedure based on the D-H 
convention in the following algorithm for deriving the 
forward kinematics for any manipulator (Spong, 2004), 
(Aracil, 1997), (Craig, 1955). 

• Step l. Locate and label the joint axis  𝑧!, . . . , 𝑧!!!. 
• Step 2. Establish the base frame. Set the origin 

anywhere on the 𝑧!-axis. The 𝑥! and 𝑦! axis are 

chosen conveniently to form a right-hand frame. For 
𝑖   =   1... 𝑛!!!, perform Steps 3 to 5. 

• Step 3. Locate the origin 𝑂!   where the common 
normal to 𝑧!   and 𝑧!!!  intersects 𝑧!. If 𝑧! intersects 
𝑧!!!  locate 𝑂! at this intersection. If 𝑧!  and 𝑧!!! are 
parallel, locate 𝑂! in any convenient position along 
𝑧!. 

• Step 4. Establish 𝑥! along the common normal 
between 𝑧!!! and 𝑧!  through𝑂!, or in the direction 
normal to the 𝑧!!! - 𝑧! plane if 𝑧!!!  and 𝑧! intersect. 

• Step 5. Establish 𝑦! to complete a right-hand frame. 
• Step 6.Establish the end-effector frame  𝑂!𝑥!𝑦!𝑧!. 

Assuming the n-th joint is revolute, set 𝑧! = d along 
the direction  𝑧!!!. Establish the origin on 
conveniently along  𝑧!, preferably at the center of the 
gripper or at the tip of any tool that the manipulator 
may be carrying. Set 𝑦! = s in the direction of the 
gripper closure and set 𝑥! = 𝑛 as   𝑠×𝑑. If the tool is 
not a simple gripper set 𝑥! and 𝑦! conveniently to 
form a right-hand frame. 

• Step 7. Create a table of link parameters  𝑎!,𝑑!, 𝛼!, 𝜃!. 
 

2.2 The parameters of Denavit-Hartenberg 
• Link Lenght (𝑑!) or (𝐿!): Distance (in modulus) 

measured along the common normal between axis of 
the joints.Translates the concept of linear separation 
between the axis of the joints. 

• Offset or Dislocation of Joints (𝛼!) or (𝑟!): The joint 
dis-location reflected, in general, the distance 
between links along the joint as before. More in 
detail, is the distance (with sign) between the axis 
𝑥!!! and 𝑥! measured on the axis 𝑧!!! (which is 
common among normal 𝑥!!!  and𝑥!), starting from 
the 𝑂!and heading toward  𝐻!. The sign of this 
parameter is positive if one goes from 𝑂!!! to 𝐻! in 
the positive direction of 𝑧!!!  and negative when one 
walks in the opposite direction of 𝑧!!!. 

• Joint Angle (𝜃!): Angle (with sign) defined generally 
between the axis of one link and of the next link. It 
is the angle between the axis 𝑥!!!  and the axis 𝑥!, 
measured about the axis 𝑧!!!  according to the right-
hand rule, i.e. the angle of rotation about the axis 
𝑧!!!  the axis 𝑥!!!  must rotate so that it is parallel to 
the axis 𝑥!.  

• Link Twist (𝛼!): Torsion angle requires that the link 
from the axis of the former joint to the axis of the 
joint ahead. That is, the angle (with sign) between 
the axis 𝑧!!!  and axis 𝑧!   measured around the axis 
𝑥!, according the right-hand rule. It is nothing more 



than the angle of rotation around the axis 𝑥!   the axis 
𝑧!!!  must turn to be parallel to the axis 𝑧! . 

 
The four parameters are illustrates in Fig. 2 
 

 
Fig. 2.  D-H Notation. 

The table 1 illustrates the four Denavit-Hartenberg parameters 
Table 1. the four Devanit-Hartenberg parameters.  

Symbol Rotational Joint Prismatic Joint 
𝑑!or 𝐿! Fixed Fixed 
𝛼!  or 𝑟! Fixed Variable 
𝜃! Variable Fixed 
𝛼! Fixed Fixed 

 

2.3 The Kinematics Matrix of Denavit-Hartenberg 

The matrix denoted by 𝑇!!!!  is: 
 

𝑇!!!! = 𝑅𝑜𝑡 𝑥;   𝛼! .𝑇𝑟𝑎𝑛𝑠 𝑧;   𝑟! .𝑅𝑜𝑡 𝑧;   𝜃! .𝑇𝑟𝑎𝑛𝑠 𝑥!;   𝐿!
      
 (1) 
where Rot and Trans represent rotations and translations. 

𝑇!!!! =

𝐶𝜃! −𝑆𝜃!𝐶𝛼! 𝑆𝜃!𝐶𝛼!   
𝑆𝜃! −𝐶𝜃!𝐶𝛼! −𝐶𝜃!𝐶𝛼!
0 𝑆𝛼! 𝐶𝛼!
0 0 0

−𝐿!𝐶𝜃!
𝐿!𝑆𝜃!
𝑟!
1

    (2) 

where C and S respectively represent cos and sin. 
 

2.4 Considerations on the Denavit-Hartenberg model 
The method of D-H behaves very well with robotic systems 

of linear chains, so we apply the four parameters in a 
relatively simple manner. However, when the robotic systems 
become more complex if the closed chains or branched 
chains, the method proposed by Denavit and Hartenberg 
redundancy features, as described in Section Khalil-
Kleinfinger. The model proposed by Denavit and Hartenberg 

has a singularity when two consecutive axis are parallel or 
approximately parallel. In this case the parameters di 
homogeneous transformation that provides the relationship 
between these axis are linearly dependent4 Which makes the 
incomplete type. 

3 THE KHALIL-KLEINFINGER MODEL 

The aim of the new notation is to define a method that can 
easily be used as easy and as general Denavit-Hartenberg no-
tation thus defining a practical method for obtaining branched 
kinematic model of robots. 

 

3.1 Description (Klasing, 2009), (Etienne, 2006) 

For straight chain 3D is usually used method Denavit-
Hartenberg that specifies the relative position of Fi with 
respect to 𝐹!!!by four parameters as specified in table I. 
However, it appears that the manner in which the indices are 
assigned this notation causes serious problems for branched 
kinematic structures, as will be shown in subsequent section. 
Soon, the four Denavit-Hartenberg parameters are used in 
accordance with the notation of Khalil-Kleinfinger 5. The Fig. 
3 illustrates the meaning of the four parameters khalil-
Kleinfinger. The coordinate system Fi is transformed into its 
predecessor 𝐹!!!  by the following operations: 

• Translation of 𝑟!along the 
axis 𝑧!.  

• Rotation of 𝜃! about the 
axis 𝑧!.   

• Translation of 𝑑! along the 
axis 𝑥!!!.  

• Rotation of 𝛾! about the axis 
𝑥!!!.  

 
Fig. 3.  khalil-Kleinfinger Parameters.  

 
1) The Transformation Matrix: The transformation 

matrix of model Khalil-Kleinfinger is given by: 
4In linear algebra, a set S of vectors is said to be linearly independent if none 
of its elements is a linear combination of others. 
5For powertrains parameters Khalil-Kleinfinger  𝜃! ,𝑟! ,𝛼!!! and  d!!! 
correspond to the parameters of D-H. 



 
𝑇!!!! = 𝑇𝑟𝑎𝑛𝑠 𝑥,𝑑! .𝑅𝑜𝑡 𝑥,𝛼! .𝑇𝑟𝑎𝑛𝑠 𝑢, 𝑎!" .𝑅𝑜𝑡 𝑧, 𝜃! .𝑇𝑟𝑎𝑛𝑠 𝑧, 𝑟!   (3) 

 

 𝑇!!!! =

𝐶𝜃! −𝑆𝜃! 0 𝑑!
𝐶𝛼!𝑆𝜃! 𝐶𝜃!𝐶𝛼! −𝑆𝛼! −𝑟!𝑆𝛼!
𝑆𝛼!𝑆𝜃! 𝑆𝛼!𝐶𝜃! 𝐶𝛼! 𝑟!𝐶𝛼!
0 0 0 1

     (4) 

2) About the variable joints: A joint variable 𝑖 is 
denoted by 𝑞! is 𝜃! if 𝑖 is rotational and 𝑟! if 𝑖 is 
prismatic. Therefore, 𝑞! = 𝜃! 1 − 𝜎 + 𝑟!𝜎!   where, 
𝜎! = 0 if the joint i is rotational and 𝜎! = 1  if the 
joint 𝑖  is prismatic. 

 
3.2 Robots branched chain in Khalil-Kleinfinger 

Notation (Klasing, 2009), (Khalil, 2006) 

The convention D-H is not suitable for this type of problem, 
since the contents of the specification only allow guidance of 
a coordinate system in relation to its predecessor. However, 
this problem can be remedied by taking double subscript, for 
example, parameters:𝑟!",𝜃!",  𝛼!",𝑑!" describing the 
processing of the link 𝐿1 for the link 𝐿2 and 𝑟!",𝜃!",  𝛼!",𝑑!" 
describing the processing of the link 𝐿1 for the link 𝐿3 and so 
on. However, the use of double subscripts destroys the 
elegance and simplicity of D-H convention and requires the 
introduction of additional constraints that specify the offset 
orientation between the coordinate systems attached. In the 
case of linear orientation kinematic chains of each link 𝐿! will 
be expressed by four parameters  𝜃!, 𝑟! , 𝛼!!!and 𝑑!!!. When a 
link 𝐿!  connects the more than one link 𝐿! each additional 
connection 𝐿! is described for a total of six parameters, where 
the four parameters 𝑟!,𝜃!,  𝛼!,𝑑! specify the orientation of 𝐿! 
with respect to 𝐿! (as for the first link 𝐿!),and two parameters 
𝛾!  and 𝜖! denoting the displacement of guidance for the first 
link in Lj . Again, the 𝑍 axis of each link must coincide with 
the axis of the joint. The axis 𝑥! branch 𝐿! must point to the 
axis 𝑧!   the first link attached  𝐿!. For each link attached 
additional 𝐿! (𝐿!,𝐿!, etc.) is helpful to imagine an auxiliary 
coordinate system 𝐹!! 𝐹!!! , 𝐹!!!!, etc.) whose axis 𝑧!! coincides 
with 𝑧! but this was changed by parameter 𝜀! over 𝑧! and 
rotated by the parameter  𝛾! about 𝑧! so that the axis 𝑥! point 
to the axis 𝑧!. A Fig. 4 illustrates these parameters. 
 

 
Fig. 4.  Parameters of K-K for branching robots. 

 
Observing Fig 4 is very easy to show that: 

• 𝛾! is the angle between 𝑥! and 𝑥!! 
• 𝜀! is the distance between 𝑧! and 𝑧! on 𝑥!! . 
• 𝑑!  is the distance between 𝑂!!  and zk. 
• 𝜃! is the angle between 𝑥!!   and 𝑥! on𝑧!. 
• 𝑟!  is the distance between 𝑂! and 𝑥!!  . 
• 𝛼! is the angle between  𝑧! and 𝑧! on 𝑥!!  . 

Mathematically, we have: 
𝑇!!!! = 𝑅𝑜𝑡 𝑧! , 𝛾! . 𝑇𝑟𝑎𝑛𝑠 𝑧, 𝜀!   (5) 

 
The transformation Matriz: The points on the coordinate 
system of the first link attached 𝐹!   is processed in the system 
predecessor 𝐹!   	
   as before using the transformation matrix 
given by Fig. 4. For the points system 𝐹!  	
  a transformation is 
needed because of the orientation parameters  𝑟!,𝜃!,𝛼! and 𝑑! 	
  

are expressed relative to the auxiliary system 𝐹! by the 
following matrix: 
 

𝑇!!!! =

𝑐𝑜𝑠𝛾! −𝑠𝑖𝑛𝛾! 0 𝑑!
𝑠𝑖𝑛𝛾! 𝑐𝑜𝑠𝛾! 0 0
0 0 1 𝜀!
0 0 0 1

  (6) 

 
Points in the system  𝐹!, are processed in the system 𝐹! of: 

 

𝑇!! = 𝑇!!
! .𝑇!!

!
    (7) 

 
3.3 Example (kanzaki, 1991) 

Now, we examine the khalil-Kleinfinger parameters of a robot 
having two arms with three joints as shown in Fig. 5 and Fig. 
6. The connection table which indicates in table 2 and the link 
parameters of the robot are shown in the table 3-C. The chain 
of each branch from the terminal link to the base is as follows: 

• Branch 3: link 23-link 𝑙3-branch 1-base 
• Branch 2: link 22-link 𝑙2-branch 1-base 
• Branch 1: link 31	
  -link 21-link 1-base 

 



Each of branches can be regarded as a serial link robot. 

 
Fig. 5.  A robot having two arms with three joint. 

 

 
Fig. 6. Fig. Structure of a robot having two arms with three joint. 

	
  

Table 2. connection table. 
Branch number  of base 

side 
Branch number diverged  from 

base side 
1 2,3 

 
 

Table 3. link parametes for the example. 
Branch Link i 𝑎! 𝛼! 𝑑! 𝜃! 𝜖! 𝛾! 

1 
1! 
2! 
3! 

0 
𝑙1  
0 

0!  
90!  
0! 

0 
0 
0 

𝜃!! 
𝜃!" 
𝜃!" 

0! 
0! 
0! 

0 
0 
0 

2 1! 
2! 

𝑙!  
𝑙! 

−90!  
0! 

0 
0 

𝜃!" 
𝜃!! 

 

0! 
0! 

0 
0 

3 1! 
2! 

𝑙!  
𝑙! 

−90!  
0! 

0 
0 

𝜃!" 
𝜃!" 

180! 
0! 

0! 
0! 

4 APPLICATION OF THE METHOD OF          
KHALIL-KLEINFINGER IN THE BIFURCATED 

ROBOT 

4.1 Coordinate of links 

The reference coordinate 𝑂!=(𝑥!; 𝑦!; 𝑧!) is assigned to the link 
𝑖. The system will be described using the notation of Khalil-
Kleinfinger. The axis 𝑧!  is along the axis of the joint 𝑖 

connecting the link 𝑖 − 1 to the link 𝑖, the same can be said of 
the link 𝑗.The framework described is shown in Fig 7.The 
table 4 with the kinematic parameters is: 
 

Table 4. Kinematic parameters for the brachiation robot. 
link α!,! d!,! θ!,! r!,! 

1 0 L1 𝜃! 0 
2 0 L2 𝜃! 0 
3 0 L3 𝜃! 0 

 

 
Fig. 7. Parameters K-K for the bifurcated robot of 3 links. 

 
4.2 The Transformation Matrix 

From the parameters of table IV and (4) we have: 
 

𝑇!! =

𝐶𝜃! −𝑆𝜃! 0 𝐿!
𝑆𝜃! 𝐶𝜃! 0 0
0 0 1 0
0 0 0 1

  (8) 

 

𝑇!! =

𝐶𝜃! −S𝜃! 0 𝐿!
𝑆𝜃! 𝐶𝜃! 0 0
0 0 1 0
0 0 0 1

  (9) 

 

𝑇!! =

𝐶𝜃! −𝑆𝜃! 0 𝐿!
𝑆𝜃! 𝐶𝜃! 0 0
0 0 1 0
0 0 0 1

  (10) 

 
which are the transformation matrices of the kinematical 
model for the bifurcated robot. 

5 DENAVIT-HARTENBERG MODIFICATION 

5.1 Indexing of Links, Joints and Frames 

The links of a bifurcated robot are indexed according to the 
binary heap data structure (Sedgewick, 1990), very usual in 
the storage of binary trees. 
 



For instance, the robot in the Fig. 8 would be indexed as 
shown: 

 
Fig. 8. Binary Tree. 

 
We start with 1. In this setting the link before link 𝑖	
  is the link 
𝑖 = 2, the link to the right is the link 2𝑖, and the link to the left 
is the link 2𝑖 + 1. The link  𝑖	
  is attached to the former link by 
the joint 𝑖	
  and to the further link by the joint 2𝑖. The frame of 
a link  𝑖	
   follows the Denavit-Hartenberg convention, except 
with indexes scheme of a bifurcated robot. As an example, the 
frame origin of the link 𝑖	
   is in the 𝑧!! 	
   axis passing through 
joint 2𝑖. Its illustrated in Fig. 9. 
 

 
Fig. 9. Indexes for a bifurcated robot. 

 

5.2 The Algorithm 

The kinematic model of a branched robot says that each link’s 
transformation matrix 𝑇𝑖	
   should be multiplied as in a depht-
first search in trees in preorder form. At each step in the 
recursion, the algorithm multiplies the current frame’s matrix 
with the product of all transformation matrices already 
computed on the traversal. 
 
We start at the base link i	
  = 1: 
Recursive function: 

• Step 1. Let the current frame be 𝑖, if the current 
frame is  null , return to previous frame 𝑖/2; 

• Step 2. else, compute the frame transformation 
between the current link (frame 𝑖) and the product of 
all transformation matrices; 

• Step 3. call the recursive function for the link at the 
right to the right using 2𝑖	
  as the current link; 

• Step 4. call the recursive function for the link at the 
left the right using 2𝑖   +   1	
  as the current link. 

6 APLICATION THE DENAVIT-HARTENBERG 
MODIFICATION IN BIFURCATED ROBOT 

Applying the modifications given by section III-C in 
brachiation robot and using 2 we have the following matrices: 

 

𝑇!! =

𝐶𝜃! −𝑆𝜃!     0    
𝑆𝜃! 𝐶𝜃!   0  
0 0 1
0 0 0

      

𝐿!𝐶𝜃!
𝐿!𝑆𝜃!
0
1

   (11) 

 

𝑇!! =

𝐶𝜃! −𝑆𝜃!     0    
𝑆𝜃! 𝐶𝜃!   0  
0 0 1
0 0 0

      

𝐿!𝐶𝜃!
𝐿!𝑆𝜃!
0
1

   (12) 

 

𝑇!! =

𝐶𝜃! −𝑆𝜃!     0    
𝑆𝜃! 𝐶𝜃!   0  
0 0 1
0 0 0

      

𝐿!𝐶𝜃!
𝐿!𝑆𝜃!
0
1

   (13) 

 

7 CONCLUSION 

This paper presented models widely used in robotics. The 
problem of redundancy in the case of branched robots changes 
were made in Denavit-Hartenberg model which generated the 
model-Khalil Kleinfinger. Innovation takes place in changing 
the Denavit-Hartenberg model using the theory of tree 
structures (depth-first search) by changing the reference 
system forming a recursive algorithm.Thus one can 
circumvent redundancy and apply the transformation matrix 
of Denavit- Hartenberg. With this we can solve problems of 
bifurcated robots of n	
   links via the recursive algorithm in 
which the parameters are given in relation to the previous 
setting, systematically the transformation matrices. From the 
studies we can still make comparisons with the Screw Theory 
which remains open. 
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