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Abstract— This paper presents a comparison of four artifact removal techniques on single-trial event-related
potentials (ERPs). The techniques analyzed are the threshold analysis, the filtering approach and the Independent
Component Analysis (ICA). Two algorithms that are based on two broadest definitions of independence for ICA
were tested, which are the fast/CA and runica. The processing time of the techniques, the electroenfalographic
(EEG) signal-to-noise ratio (SNR) and the event-related desynchronization/synchronization (ERD/ERS) are
studied during four motor mental tasks, which are the imagination of either movement of right and left hands,
both feet and rotation of a cube. In order to estimate the number of epochs necessary to observe the ERD/ERS
pattern and to compare the performance of the artifact removal techniques, we suggest an analysis of the EEG
SNR through a comparison with the correlation between the ongoing average and the final ERD/ERS curve. The
fastICA algorithm obtained the best performance among the analyzed techniques. It improved the EEG SNR
and it increased the ERD/ERS amplitude by 12.6 £+ 9.4%. The fastICA algorithm spent 1 4+ 0.18 ms and it is

the best option to be implemented online for artifact removal in BCI applications.

Keywords— Artifact removal, Independent component analysis, Single-trial event-related potentials, Event-
related desynchronization/synchronization, Brain-computer interfaces.

1 Introduction

Recent studies have succeeded in demonstrating
that non-invasive measures, such as the electroen-
cephalographic signal (EEG), may be used to con-
trol robotic devices (del R. Millan et al., 2004; Fer-
reira et al., 2008; Muller et al., 2010), using spe-
cific interfaces between a computer and the human
brain. For a detailed review on such interfaces,
referred to as Brain-Computer Interfaces (BCIs),
see (Wolpaw et al., 2002; Wolpaw, 2007; Cincotti
et al., 2008).

In the context of BCI usage, this work aims
at improving a BCI reliability by increasing the
EEG signal-to-noise ratio (SNR). Here, "noise”
includes non-phase-locked EEG signals and non-
neural artifacts such as eye blinks and eye move-
ments. The simplest approach to deal with the ar-
tifact is to perform a threshold analysis (Croft and
Barry, 2000; Jung et al., 2000). Some more com-
plex approaches include performing Blind Source
Separation (BSS) using Independent Component
Analysis (ICA). Two algorithms that are based
on two broadest definitions of independence for
ICA were tested, which are the fastICA and runica
(Jung et al., 2001; Ford et al., 2004). The process-
ing time of the studied techniques are presented in
order to evaluate whether it is possible to adapt
the algorithms to an online approach.

In order to estimate the number of epochs nec-
essary to observe the event-related desynchroniza-
tion/synchronization (ERD/ERS) pattern and to
compare the performance of the artifact removal
techniques, we suggest an analysis of the EEG
SNR through a comparison with the correla-
tion between the ongoing average and the final
ERD/ERS curve.

2 Materials and Methods

2.1 Ezperimental environment

Data were acquired with five right handed male
subjects aged between 26 to 34 years (30.4 +
3.5). All subjects had normal hearing, normal or
corrected-to-normal vision and no history of sub-
stance abuse, major medical psychiatric illness, or
developmental or neurological disorder.

The BrainNet36® (BNT) device was used for
EEG acquisition with a cap of integrated elec-
trodes from MedCap® company. We used 19 elec-
trodes positioned according to the international
10-20 system. The grounding electrode was posi-
tioned on the user forehead, monoauricular refer-
ence was adopted and all impedances were kept
below 5 KQ (Ford et al., 2004; Luck, 2005). The
EEG was acquired at a sampling rate of 200 Hz.
BNT is a device for clinical purposes that does
not export data online. Therefore, a sniffer pro-
grammed in ANSI C was developed to export
these data allowing the online processing, which
was performed on MATLAB 7.11.09 (R2010b) in
an Intel® CoreTM i7 computer.

For each mental task 60 epochs were taken,
each epoch corresponding to 25 s. For each epoch
subjects were instructed to sit with hands resting
on the legs and to observe a cross in the center of
the screen. The cross is a fixation point to avoid
excessive eye movement artifact. After 5 s an ar-
row replaces the cross indicating the start of the
mental task. The mental task lasts 10 s, and then
the cross reappears in place of the arrow indicat-
ing that the mental task is over. The subject must
remain static until the cross is replaced by a circle
at time 25 s, indicating the end of the record.



The project was approved by the Ethics Com-
mittee of the Universidade Federal do Espirito
Santo (Brazil), recognized by the Ethics Commit-
tee of the Research Ethics National Commission
(CEP-048/08).

2.2 EEG pre-processing

The study of spatial filters presented by
(McFarland et al., 1997) concluded that the Com-
mon Average Reference (CAR) and large Lapla-
cian methods would be suitable for BCIs based on
the paradigm of motor imagination. Large Lapla-
cian method uses electrodes with 6 cm of distance
one from each other. The motor cortex has radius
between 6 to 12 c¢m, then Laplacian filters over
the motor cortex with radius smaller than 6 cm
would attenuate the information from the motor
cortex itself. The present study used different mo-
tor related tasks, and as we do not know the exact
size of the brain areas that are active during the
mental tasks, the CAR method was adopted.

2.8 Description of the ERD/ERS method

The ERD/ERS pattern is extensively discussed
in (Pfurtscheller and da Silva, 1999) and will be
briefly covered below. During no specific mental
task, individual neurons of a neural mass became
synchronized with the thalamic pacemaker signal.
Then, the neuron mass emits signals in a specific
frequency band. Thus, the resulting EEG of the
neural mass has higher energy in frequency bands
corresponding to the synchronization. Conversely,
during the mental task individual neurons of a
neuron mass lose the synchrony, emitting signals
at different frequencies, which are specific to per-
form the mental task. Therefore, the EEG energy
of the neural mass is lower for frequency bands
corresponding to the synchronization.

Then, the ERD and the ERS are, respectively,
the relative decrement and increment of energy
that occurs in specific frequency bands. During
the mental task an ERD can be observed, which
is followed by an ERS when the mental task is
over. Figure 1 shows the application of the classic
method for measuring the ERD/ERS pattern, as
described by Pfurtscheller et al. (1999), for sub-
ject 3 (26 year old).

Due to the large amount of noise present in
the EEG signal, the ERD/ERS pattern is better
observed in the average behavior obtained from
several trials. It is considered that the ERD/ERS
pattern is time-locked to the event and the spon-
taneous EEG activity is modeled as an additive
random noise. As the number of trials increases
the time-locked activity stresses and the sponta-
neous activity decreases, then the ERD/ERS pat-
tern can be observed.

The EEG obtained in each trial, under the
same conditions, is called epoch. In this exper-

iment 60 epochs were used and the subject per-
formed the mental task of imagination of move-
ment of the right hand. Figure 1(a) shows in gray
the superimposition of the EEG from channel C3
of the first, fifteenth, and thirtieth epochs, respec-
tively, in black, dark and light gray. The mental
task lasted 10 s, occurring between 5 and 15 s of
the EEG record, which corresponds to the cen-
tral area, not hatched of the figure. The volun-
tary motility is 100 % crossed, therefore, channel
C3, positioned over motor cortex of the left brain
hemisphere, was used in the analysis of the EEG
concerning the imagination of the movement of

the right hand.
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Figure 1: ERD/ERS calculation method. (a) raw
EEG from channel C3 during the first, fifteenth,
and thirtieth epoch, respectively in black, dark
and light gray; (b) EEG from channel C3 filtered
at p band; (c¢) channel C3 u band energy (d) chan-
nel C3 p band average energy of 60 epochs; (e)
channel C3 y band ERD/ERS.

Then, EEG signals from channel C3 were fil-
tered in specific band of frequencies. For motor
mental tasks, it is known that the ERD/ERS oc-
curs in g (8-12 Hz) and 5 (14-30 Hz) frequency
bands (Pfurtscheller and da Silva, 1999). Figure
1(b) shows the EEG filtered at p band. In this
study we used a FIR equiripple bandpass filter
with forward and reverse order filtering algorithm
to cancel the effect of phase distortion. This fig-
ure also shows the superimposition of the filtered
EEG of the three aforementioned epochs. Our ob-
jective with this figure is not to show individual
characteristics of the epochs, but just to empha-
size that the steps are performed individually, for
each epoch.

The filtered EEG from each epoch was
squared in order to obtain the signal energy (fig-
ure 1(c)). Then, the average energy of all epochs
was calculated (figure 1(d)). Here, the signal en-



ergy is used to prevent the cancellation of positive
and negative EEG amplitudes during the average
process.

Finally, as the ERD/ERS are measured as
percentages, the average energy of a previous ref-
erence period is calculated. Thus, the signal en-
ergy can be measured in relation to the reference
period. In this work, the reference period is the
one between 1 s and 3 s of the recording, which
is highlighted in figure 1(e) as the interval shaded
in dark gray. The horizontal line stresses the null
value of the reference period.

In figure 1(e) the energy decrement of around
70 % occurring between 5 s and 15 s is the ERD,
and the energy increase of around 60 % occur-
ring between 15 s and 20 s is the ERS. Therefore,
the ERD/ERS pattern can be observed mainly at
electrodes placed over the scalp region of motor
cortex during motor mental tasks.

3 Independent component analysis

ICA is a method for solving the BSS problem re-
covering N independent source signals, s, from N
linear mixtures, x, and it relies on the assumption
that the source signals are mutually statistically
independent or decorrelated while their mixtures
are not. Statistical independence requires that all
second-order and high order correlations are zero,
while decorrelation only seeks to minimize second-
order statistics, which are the covariance or cor-
relation. The linear mixture of N sources can be
written as,

x=Ases=A1 xes=W.x (1)

Where, A is an unknown invertible square
matrix given by an ICA algorithm. Once A is
known, the source signals can be found by invert-
ing the mixing process, leading to the unmixing”
matrix W. The rows of the input matrix x are
EEG signals recorded at different channels and
its columns are measurements recorded at differ-
ent time points. The columns of the source ma-
trix s contain the time course of ICA components.
The columns of A gives the relative projection
strengths of the respective ICA components at
each EEG site. These scalp weights represent the
fixed scalp topography of each ICA component,
and it provides evidence for the component phys-
iological origin. For example, electrooculography
(EOG) and blink artifacts should project manly to
frontal sites, then the ICA components with high
weight projected to frontal sites, should be related
to this kind of artifact, that can also be verified in
the time course of the component.

Then, the ICA components related to arti-
facts can be set to zero and artifact-free signals can
be obtained projecting non-artifactual ICA com-
ponents back onto the scalp (Jung et al., 2000;

Jung et al., 2001). The artifact-free EEG sig-
nals, Xg, can be obtained from the artifact-free
source matrix, sg, and the mixing matrix A, by
X = A - So-

4 Results

4.1 Applying threshold analysis and filtering for
artifact removal

Figure 2 shows a 25 s single-trial of subject 2 con-
taminated by five eye blink artifacts. Below each
channel (Fpl and C3) it is the periodogram. This
figure shows the raw EEG, the application of the
CAR method, the discard of artifacts by using the
threshold analysis and the filtering method. For
the threshold analysis whenever EEG signals from
selected frontal channels exceed £50uV , a 0.5 s
time window centered around the EEG peak of
these electrodes will be discarded or annulled in
all EEG channels (Croft and Barry, 2000; Jung
et al., 2000). In the filtering approach the cor-
rupted time window identified by the threshold
analysis is replaced by a filtered one. The filtered
time window used a FIR equiripple highpass fil-
ter set to 5 Hz, with forward and reverse order
filtering algorithm.

It can be noted in channel C3 that using the
threshold and the filtering approaches a peak of
activity around 10 Hz becomes evident between
15 and 25 s. And this peak of activity lasts longer
for the filtering approach, because the threshold
approach causes loss of information.

4.2 Applying ICA for artifact remouval

Figure 3 shows the ICA components and their
fixed scalp topography of the same trial analysed
before, in figure 2. This experiment correspond
to the mental task of imagination of movement of
the right hand, which occurred between 5 and 15
s, and 19 electrodes were used. Then, the input
matrix has 19 linear mixtures and ICA algorithm
results in 19 independent components and 19 re-
spectively scalp topographies, that are shown in
the right side of each component.

In the scalp topography, the relative strength
of the ICA component over the 19 scalp sites is
shown in shades of gray, in which light shades are
related to a high strength

In the left part of figure 3 it can be seen that
the first ICA component (ICA-1) is very similar
to the time course of the eye blink artifact shown
in the EEG of channel Fpl in figure 2. The scalp
topography of this component is shown at its right
side, and it can be seen that its strength is higher
for frontal sites, in particular at Fp2. Then, this
component can be set to zero in order to obtain
a relative artifact-free EEG. The right part of fig-
ure 3 shows the minimization of eye blink arti-
facts by using fastICA and runica algorithms. It
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Figure 2: EEG of channels Fpl and C3 and their periodograms during the
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application of the following

cases: raw EEG; CAR method; threshold analysis and filtering.

can be seen that for both algorithms the eye blink
artifacts of channel Fpl are completely annulled
and there is no low frequency artifact in the pe-
riodogram. It can be noted in channel C3 a peak
of activity around 10 Hz becomes evident between
15 and 25 s.

In average, the threshold analysis spent 0.34+
0.47us. The filtering approach spent 178.6 £ 7.7
ms. The fastICA algorithm spent 1+0.18 ms and
the runica algorithm spent 3.6 4+ 0.61 ms.

4.8 ERD/ERS improvement by using ICA

Figure 4 shows ERD/ERS of subject 1 obtained
for channel C3 using 60 epochs during mental
task of imagination of cube rotation. The black
line shows the ERD/ERS obtained without ar-
tifact removal, by only using the CAR method.
The dark gray line shows the ERD/ERS obtained
with fastICA and the light gray line shows the
ERD/ERS obtained with runica. It can be ob-
served that fastICA provided a small improve-
ment in the ERD/ERS amplitude. The ERS peak
reached 163% and by using fastICA it reached
186% while the ERD did not changed.

It can be seen that the runica worsened the
ERD/ERS curve, and the ERS peak only reached
45%. The average result of applying ICA during
all mental tasks and subjects was an improvement
of 12.6 4+ 9.4%. It means that, in average, the
application of fastICA enhanced a little the EEG
SNR so the ERS peak or the ERD depression was
more detectably.

4.4 EEG SNR analysis

The SNR of the EEG approximately increases pro-
portionally to the number of trials and the noise
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Figure 4: ERD/ERS of channel C3 at p band.
In black: ERD/ERS obtained without artifact re-
moval; in dark gray: ERD/ERS obtained with
fastICA; in light gray: ERD/ERS obtained with

TUNICA.

amplitude of the average of N trials is SNR =
1/\/N times that of a single trial. Then, an ex-
cessive number of trials will not cause meaningful
changes in the observed ERD/ERS (Luck, 2005).
When dealing with the EEG signal it is very diffi-
cult to distinguish the noise component from the
clean ERP signal. Then, it is complicated to per-
form a realistic estimation of the ERP and the
noise amplitudes in order to calculate the SNR
improvement for each new added trial. Then,
we consider using the signal correlation that is
strongly related to the SNR. Let’s consider the
correlation between a signal z with this same sig-
nal corrupted with a noise n, and both are zero-
mean and uncorrelated. Then, we have that the
corrupted signal is given by y=z+n, and the cor-
relation is

S S o
Py = e = (2)
VS-(S+N) N 1-p7,

Where S is signal energy and N is the noise
energy. Equation 2 shows the relation between
the SNR and the correlation for the specific case

in which both signal and noise are uncorrelated.
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Figure 3: Left: ICA components obtained by fastICA algorithm and their fixed scalp topographies;
Right: EEG of channels Fpl and C3 and their periodograms during the application of the following

cases: fastICA algorithm and runica algorithm.

However, the assumption that the ongoing aver-
age is uncorrelated from the ERD/ERS curve is
not true, and then, eq. 2 cannot be directly ap-
plied to find the ERP SNR. As a conservative ap-
proach, the rescaled correlation function was com-
pared with the square root of the SNR (i. e., the
noise amplitude) by using a polynomial regression.

An estimative of the EEG SNR was per-
formed, using a comparison with the correla-
tion between the ongoing average and the final
ERD/ERS curve (c1), and the correlation between
a single trial and the ongoing average as well
(c2). This analysis was performed in order to es-
timate if the number of trials used to observe the
ERD/ERS was enough or excessive.

The left part of figure 5 shows cl of channel
C3 in the black continuous line, obtained for the
right hand mental task. From 30 epochs forth cl
reaches 95% and the ERD/ERS curve obtained so
far is very similar to the ERD/ERS curve obtained
by using the total amount of 60 epochs. The left
part of figure 5 shows c2 in the gray continuous
line. In this curve, from 30 epochs forth c2 reaches
16%, and when using the total amount of epochs
it decreases only 2% more.

Finally, the gray dashed line in the same figure
shows the square root of the theoretical SNR as
more epochs are considered and it is related to the
right vertical axis. ¢l was divided into two parts,
from the first epoch to an epoch n, and from n to
the end of cl. Then, two polynomial regressions
were performed for each part of ¢l using functions
of the type f(n) = c¢- (n)*, where ¢ is a scale
parameter. The right part of figure 5 shows in the
black line the a value of the first part of cl, as n
varied. It can be seen that from 7 to 11 epochs
the a value is quite close to the value of the SNR
curve (that is 0.5).

The right part of figure 5 shows in the gray
line the a value of the second part of cl, as n var-
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Figure 5: Left: cl of channel C3 is shown in the
black continuous line; ¢2 of channel C3 is shown
in the gray continuous line; the vV SNR curve is
shown in the gray dashed line. Right: The a value
of the first part of cl is shown in the black line.
The a value of the second part of ¢l is shown in
the gray line.

ied. The a value obtained from 11 to 60 epochs,
corresponds to a = 0.34, which means approxi-
mately f(n) = ¢/n. This indicates that only for
the first 10 epochs, where cl reaches 80%, the
information increases as predicted by the SNR
curve. Then, most of the information about the
ERD/ERS pattern is already retained with just
10 epochs.

As the polynomial regression obtained values
very close to the SNR enhancement function, we
assume that the non-converged part of c1 can rep-
resent the EEG SNR. Then, the application of
fastICA algorithm would enhance a little the EEG
SNR what should be verified from c1. In the same
way, the use of runica algorithm would decrease
the EEG SNR, what should be also verified from
cl. The left part of figure 6 shows this relation
where the black line shows cl of channel C3 ob-
tained without artifact removal, by only using the
CAR method. The dark gray line shows cl ob-
tained with fastICA and the light gray line shows
cl obtained with runica.
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Figure 6: cl of channel C3 is shown in the black
line; ¢l of channel C3 obtained with fastICA is
shown in the dark gray line; c1 of channel C3 ob-
tained with runica is shown in the light gray line.

5 Conclusion

In previous works we described our BCI and re-
garding the processing time we suggested the
use of 1 s time windows with 50% of overlap
(Benevides et al., 2011; Benevides et al., 2012).
Then, the classification output is made every 0.5
s and all tested algorithms could be implemented
online in BCI applications running minimally in
our aforementioned requirements.

As BCI applications needs an online usage of
ICA, the "unmixing” matrix W can be estimated
during some training trials and used in later tri-
als, and the processing time will be only due the
matrix multiplication. The fastICA algorithm ob-
tained the best results and it is our suggestion for
artifact removal.
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