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Abstract— In this paper a model based fault detection system is developed for a control valve. The features
extracted by the fault detection system are produced using the structured parity equations technique; therefore,
linearized mathematical models of the control valve are obtained. At the end of the work, 17 of 25 faults are
detected.
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1 Introduction

Fault detection is a field of study of constant devel-
opment, as characteristics like safety and fault tol-
erance are always desired in engineering projects.
To achieve such requirements, several methods of
fault detection have been developed, with great
range of applications.

In this paper, a model based fault detection
system will be applied to a control valve, whose
faulty operation is known as one of major cause of
scarce performance of control loops (Scali et al.,
2011).

2 Fault Detection Based on Structured
Residuals

A general scheme of the model based fault detec-
tion method is shown in figure 1 (Isermann, 2006):
it consists of the identification of the analytical

Figure 1: Model based fault detection method

symptoms (also called fault signatures) in some
feature produced with data from the process and
from a mathematical model that simulates the be-
havior of the process in the absence of faults. The

fault signatures are patterns produced in the fea-
ture when a fault is acting on the process.

One of the main features used for model based
fault detection are the output error residuals: it
consists of the difference between the outputs of
the process and the model. Thus n residuals can
be produced for a process with n outputs.

Ideally if no fault is present in the process, the
residuals are null; otherwise a fault is said to be
acting on the process. In this situation the residu-
als are influenced only by the faults. However, fac-
tors like measurements noise and modeling errors
also affects the residuals, so thresholds are usually
adjusted in order to avoid false detections.

A further improvement that can be done is the
use of structured residuals: in this approach, the
faults will influence some residuals, and some not
(Isermann, 2006). This is done by canceling the
effects of some measured process signals in some of
the residuals: For example, if a residual r1 is not
affected by a signal u1, r1 is considered indepen-
dent of u1. In the structured residual technique,
every residual is independent of one measured sig-
nal from the process. This enhances the distinc-
tion between the fault signatures, as every residual
belong to certain subspaces in the residual space.

3 Experiment Description

The structure used for the experiment consists of
a pneumatic linear servo motor, positioner and a
control valve with equal-percentage inherent flow
characteristic. The servo motor has a stroke of
38.1mm, while the valve has a maximum flow of
40t/h, with water as the operation fluid. There
is a bypass valve, which only opens when a spe-
cific fault is acting on it; otherwise it remains fully
closed all the time. All the components and faults
were simulated with the DAMADICS Actuator
Benchmark (Syfert et al., 2002).

The measured signals are the flow F across



the valve, the servo motor stem displacement X
and the input signal to the valve CV , that is the
output from a controller, all of them being mea-
sured in a percentual scale.

The servo motor, positioner and control valve
are subjected to the occurrence of 25 faults, shown
in table 1, where the signal (∗) indicates the faults
with two directions; that means these faults can
deviate the behavior of the process to a higher or
lower value.

Table 1: Faults

Control Valve Faults
f1 Clogging
f2 Plug or seat sedimentation
f3 Plug or valve seat erosion
f4 Increase of valve stem friction (∗)
f5 External leakage
f6 Internal leakage
f7 Medium evaporation or critical flow

Pneumatic Servo Motor Faults
f8 Twisted servo-motor’s stem
f9 Servo-motor housing tightness
f10 Servo-motor’s diaphragm perforation
f11 Servo-motor’s spring fault

Positioner Faults
f12 Electro-pneumatic transducer fault (∗)
f13 Stem displacement sensor fault (∗)
f14 Air supply pressure sensor fault (∗)
f15 Positioner feedback fault

External Faults
f16 Positioner supply pressure drop
f17 Unexpected pressure change (∗)
f18 Fully or partly opened bypass valves
f19 Flow rate sensor fault (∗)

4 Valve Mathematical Model

In order to construct the structured residuals
based on the output error, a mathematical model
describing the non-faulty behavior of the valve has
to be found. This step is of major importance,
since the more accurate the model, the more ac-
curate the fault detection system will be; how-
ever, it’s known that when the process is of great
complexity, it becomes impracticable to obtain its
complete description; in cases like that some as-
sumptions can be made in order to simplify the
model, and it’s up to the engineer to find a good
relation between simplicity and accuracy.

Regarding the control valve, the flow across
it is dependent of the input signal, the servo mo-
tor stem displacement, and the fluid temperature
and pressures at the valve inlet and outlet; in this
work the fluid temperature and its pressure drop
across the valve were maintained constant at val-
ues that prevented effects like flashing, cavitation

and choked flow to occur. Therefore the only vari-
ables able to modify the flow are the input signal
CV and the stem displacement X. Given the rela-
tions between these 3 variables, and the fact that
X is measured in the experiment, 2 models can be
constructed: the first represents the dynamics of
the servo motor and positioner, while the second
represents the dynamics of the valve, as can be
seen on figure 2. Theoretically, this approach is
better than considering an unique model relating
F with CV , because more residuals are able to
be constructed, increasing the numbers of faults
signatures that can be produced.

Figure 2: Model Structure of the valve

A ramp signal is applied at the control valve
to identify any nonlinear behavior; the response
is given at figure 3: it can be seen that the most
significative nonlinearity is in the valve dynamics:
it has reverse action response, and the flow only
starts to change when the stem displacement be-
comes higher than approximately 45%.

Figure 3: Valve Ramp response

Despite the nonlinearities observed, it is desir-



able to obtain linear models for G1 and G2; this
is a very common procedure when dealing with
valves (Smith and Corripio, 1985); so the input
signal CV is going to be restricted around the op-
eration range of (80% ∼ 95%). This procedure
will keep the error between the responses of the
valve and its linearized model inside acceptable
boundaries.

The linear models G1 and G2 are going to be
calculated with the MATLAB System Identifica-
tion Toolbox, and three model structures are go-
ing to be tested: first-order, second-order (under-
damped or critically damped) and second-order
over-damped, where only the minimum-phase case
is considered for all structures. The models with
better accuracy, (validated with different excita-
tion signals then the ones used in the identification
case) are going to be selected.

The excitation signals used in the identifica-
tion case is the GBN - Generalized Binary Noise,
known to improve the identification results consid-
erably, due to its capability of specifying the fre-
quency band desired to concentrate more power;
that makes possible to define an optimum GBN
signal to identify a particular system. This proce-
dure was done for each model structure tested for
G1 and G2, according to the guidelines of Tulleken
(1990).

Neglecting the positioner dynamics, the best
model calculated for the servo motor is:

G1(s) =
1.017

0.3933s2 + 1.254s + 1
(1)

The MATLAB System Identification Toolbox is
not able to estimate a satisfactory model for the
valve, due to its inverse action characteristic; so,
knowing that the relation between inverse and di-
rect action response of a linear model can be ex-
pressed by:

Yia = 1− Yda

Yia = 1−GdaU ; (2)

where Yia and Yda are, respectively, the inverse
and direct action response of a model, the equiv-
alent direct action response of the valve was cal-
culated, and this data was used to estimate the
direct action model G2ad:

G2ad(s) =
0.968

1.07s + 1
(3)

Then, the response of the inverse action model of
the valve is calculated using the model G2ad and
the relation expressed in equation (2).

A comparison of the step response of the servo
motor and the valve and its corresponding models
is given in figure 4: it can be noticed that even
with the limitation of the input signal CV at the
range (80% ∼ 95%), some nonlinearity still were

Figure 4: Step responses of valve and model

present in the valve dynamics, in the form of a
variable gain relating the flow with the stem dis-
placement; as the gain calculated for the model
G2(s) is a constant, some errors were noticed, but
were considerable acceptable, given all the simpli-
fications made.

5 Structured Parity Equations

The structured parity equations were obtained
based on the output error equations (Isermann,
2006); regarding figure 2, and considering G2 as
the inverse action model of the valve, two equa-
tions can be written:

r1 = X −Xest

= X −G1(s)CV (4)

r2 = F − Fest

= F −G2(s)X (5)

In matrix notation:[
r1
r2

]
=

[
1

−G2(s)

]
X +

[
−G1(s)

0

]
CV +

[
0
1

]
F (6)

To produce the structured residuals r∗, equa-
tion (6) has to be multiplied by a matrix W , re-



sulting in a vector of 3 components, each one in-
dependent of one variable, as shown:

r∗ =

r∗1r∗2
r∗3

 (Independent of X)
(Independent of CV )
(Independent of F )

The matrix W that satisfies these conditions is:

W =

G2(s) 1
0 1
1 0

 (7)

Therefore, the structured residuals are given by:

r∗ = W

[
r1
r2

]

=

G2(s) 1
0 1
1 0

[X −G1(S)CV
F −G2(s)X

]

=

F −G1(s)G2(s)CV
F −G2(s)X
X −G1(s)CV

 (8)

Equation (8) can be written as:

r∗ =

r∗1r∗2
r∗3

 =

F −G2(s)Xest

F −G2(s)X
X −Xest

 (9)

A block diagram showing how the structured
residuals are related to the Control valve and its
models is shown in figure 5:

Servo motor
and positioner Valve

Valve Model (G2)Servo motor

model (G1)

Input

Signal (CV)

Xest

X

Fa Fb

Real Actuator

Actuator Model

+
-

F −G2Xest

+
- F −G2X

+
- X −Xest

Figure 5: Structured residuals block diagram

The group of all possible faults that can act on
the servo motor and positioner are represented by
Fa, while Fb is the group of faults that can act on
the valve. From figure 5 it can be concluded that
the structured residual r∗1 is sensitive to all the
faults belonging to Fa or Fb, that may occur in the
whole actuator assembly; however, the structured
residual r∗2 and r∗3 will only be sensitive to one
of these groups: r∗2 is sensitive only to faults in
the valve body, while r∗3 is sensitive only to faults
acting in the servo motor and positioner. Those
relations are expressed in the table 2, where the
signal “6= 0” means that a residual is sensitive to
the occurrence of a specific fault group, while “=
0” means that the residual is insensitive.

Table 2: Residuals behavior

Residuals
Fault r∗1 r∗2 r∗3
Fa 6= 0 = 0 6= 0
Fb 6= 0 6= 0 = 0

6 Experiment Methodology

To verify the efficacy of the structured residuals
projected in (9), a step signal with initial and fi-
nal value of 80% and 95% is applied at CV for
300s (the same step signal can be seen at figure
4); this procedure is done first to the valve without
faults, to give a reference behavior of the struc-
tured residuals, and can be seen in figure 6:

Figure 6: Residuals for the valve without fault

Then the same procedure is repeated for all
the faults shown at table 1, with maximum fault
strength, abrupt development at the time instant
t = 60s, and duration of 240 seconds. Only the
residuals that deviate to a constant value are con-
sidered in the identification of the fault signatures.

7 Results

The detection results are given in table 3, giving
necessary information to perform fault diagnosis.

At total, 17 faults are able to be detected,
with 11 distinct fault signatures: the faults f7,
f9, f13 (with fault direction −1), f15, f19 (with
fd= 1), f2 andf3 can be isolated, but the group
of faults (f1, f10, f16), and (f6, f13(fd=1), f18)
can’t; this means that if the value of the vector
r∗ in a given moment is [4(+) 5(+) (0)]T , we can
only be sure that at least one of the faults in the
group (f6, f13(fd=1), f18) is acting on the valve.

Although the fault signatures caused in the
vector r∗ in the occurrence of f17 and f12 have
two distinct patterns, the detection system isn’t
able to conclude the fault direction; therefore, the
statement that the faults f17 and f12 can be iso-



Table 3: Detection Results

Fault r∗1 r∗2 r∗3
f1 4(+) 0 4(-)
f10 4(+) 0 4(-)
f16 4(+) 0 4(-)
f6 4(+) 5(+) 0

f13 (fd=1) 4(+) 5(+) 0
f18 4(+) 5(+) 0

f17 (fd=1) 4(+) 5(+) 4(-)
f17 (fd=-1) 4(+) 5(+) 4(-)
f12 (fd=1) 3(+) 0 2(-)
f12 (fd=-1) 3(+) 0 2(-)

f7 4(+) 4(+) 3(-)
f9 (+) 0 (-)

f13 (fd=-1) 0 2(-) 4(-)
f15 0 (+) 0

f19 (fd=1) 3(+) 3(+) 0
f2 0 (-) 2(-)
f3 2(+) 2(+) 0

(∗) stands for fault direction −1

lated depends on what’s required of the fault de-
tection system: only to detect a fault presence, or
to also determine its direction.

Regarding f12, a electro-pneumatic trans-
ducer fault, its development time had to be
changed to t = 10s for its fault signature to be
detected. This has to be done due to the fact that
the step signal applied in CV only excites the sys-
tem (therefore altering the transducer output) at
the time instant t = 50s.

The behavior of the structured residuals when
the valve is subjected to the fault f16, a pressure
drop in the positioner supply is given at figure 7;
it can be seen that, although the structured resid-
ual r∗2 shows some deviation, it isn’t considered,
because in order to simplify the detection system,
only the residuals that deviate to a constant value
are used. The residuals r∗2 of faults f1 and f10,
and r∗3 of f3 also have irregular deviations that
were ignored; the fault signature of f3 can be seen
at figure 8.

In the overall case, the detection results are
in accordance with table 2 (containing the predic-
tions of the structured residuals behavior in the
occurrence of 2 groups of faults); the residual r∗1
is sensitive for all the faults simulated in the ex-
periment; it has null value for the faults f15, f2
and f13(fd = −1) because the deviations pre-
sented don’t exceed the thresholds, as can be seen
in figure 9.

Comparing tables 1 and 2, the residual r∗2
should only be sensitive to the faults f1 to f7,
and be insensitive to faults f8 to f11; the results
show that r∗2 is sensitive to 8 faults, where 4 of
them (f2, f3, f6 and f7) are predicted. On the
other hand, it is insensitive to 6 faults, where 2

Figure 7: Residuals for the valve with fault f16

Figure 8: Residuals for the valve with fault f3

of them (f9 and f10) are predicted. The unpre-
dicted detections happens with faults that act in
components not included in the models G1 and
G2 (positioner and external faults).

The residual r∗3 should only be sensitive to the
faults f8 to f15, and insensitive to faults f1 to f7;
the results show that r∗3 is sensitive to 11 faults,
where 4 of them (f9, f10, f12 and f13) are pre-
dicted. From the remaining 7 faults, 3 (f1, f2 and
f7) are valve faults. Besides that, r∗3 is insensitive
to 6 faults (f3, f6, f13, f15, f18 and f19), where
2 of them (f6 and f3) are predicted. Again, the
faults in components not included in the model
affected the performance of the detection system.

8 Conclusion

This paper presents the development of a fault de-
tection system for the control valve. The output
error equations are used to produce the vector of
structured residuals r∗; to achieve, two simplified
linear models, G1 and G2, describing the behavior
of the pneumatic servo motor and the valve with-
out the influence of faults had to be calculated.
The choice of two models instead of one is made
due to the higher number of fault signatures that



Figure 9: Residuals for the valve with fault
f3(fd = −1)

could be produced.
As the valve response to a ramp input revealed

a nonlinear behavior, some restrictions has to be
made, like keeping the input signal to the valve
within the range of (80% ∼ 95%), to prevent the
error between the valve and the model to become
too high.

After the implementation of the fault detec-
tion system, 17 of 25 faults were able to be de-
tected, and 7 could be isolated. This result proved
to be good, given the fact that the fault detec-
tion system was constituted of 2 simplified linear
models used to represent the behavior of such an
complex and nonlinear system as a control valve.

The experiment results are consistent to the
predicted behavior of the structured residuals, and
it became clear that better results can be achieved
if a more detailed model, that includes the dynam-
ics of the positioner and the modeling of external
faults, is used. Besides that, the structured resid-
uals are known as an efficient tool in the detection
of additive faults, that change the process output
by adding an offset to it, and not depending on
the process input. For the detection of parametric
faults, like e.g., the change of some valve param-
eters, some parameter estimation method have to
be used, and again a detailed structure of the pro-
cess model is going to be required.
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