
GEOMETRIC ALGORITHM FOR CURVE INTERPOLATION WITH NON UNIFORM
B-SPLINES

Edson Kenji Ueda∗ Marcos de Sales Guerra Tsuzuki∗ Emilio Carlos Nelli Silva∗

Thiago de Castro Martins∗ Giulliano Batelochi Gallo† Marco Antonio Marques†

Rogério Yugo Takimoto∗

∗Laboratório de Geometria Computacional
Escola Politécnica da Universidade de São Paulo

São Paulo, São Paulo, Brazil

†Companhia Energética do Estado de São Paulo

Email: ueda.edson@gmail.com, mtsuzuki@usp.br, ecnsilva@usp.br, thiago@usp.br,

giulliano.gallo@cesp.com.br, marco.marques@cesp.com.br, takimotoyugo@gmail.com

Abstract— The interpolation of a sequence of points is an important task in Engineering. In this work, three
different interpolation methods are studied and expanded. The first method is the conventional interpolation
Spline. The second method is a subdivision based geometric algorithm. The third method interpolates a given
set of points with additional point normal constraints. The last two methods were implemented with uniform
B-Splines curves. In this work, both methods are expanded to use non uniform B-Spline curves. Three critical
curves are used to test the developed methods: circle involute, bowditch and epitrochoid. The results show that
the non uniform B-Spline implementations have better quality with smaller errors, once the value of the distance
error of the curve is in the order of 10−15 % of the bound box diagonal of the initial input data points and the
normal error is around 10−4 rad in the worst case.

Keywords— Non Uniform B-Spline, Interpolation, Curves, Geometric Algorithm, Point Normal Constraint.

1 INTRODUCTION

The interpolation of a sequence of points is an ex-
tensive tool used in Engineering, mainly in reverse
engineering, image segmentation, robot path plan-
ning and others. There are two approaches to fit a
curve in a set of data points, one is curve approx-
imation and the other is curve interpolation that
is the object of this study. In the first case an ap-
proximated curve is generated and it passes near
the data points. A way to do it is using optimiza-
tion methods like Simulated Annealing (Sobrinho
et al., 2009) and Genetic Algorithm (Hasegawa
et al., 2013). In the interpolation case a curve
that passes through all the data points is gener-
ated. In this work, apart from passing through
all the points, it will also be guaranteed the inter-
polation of the tangent and the normal of all the
points. Maekawa et al. (2007) and Gofuku et al.
(2009) proposed a geometric based interpolation
algorithm that is expanded to use uniform and
non uniform B-Spline.

The paper is organized as the following. In
section 2, a review of B-Spline curve is made and
two conventional B-Spline interpolations will be
presented, the standard point interpolation and
the Piecewise cubic Hermite Interpolation. In sec-
tion 3, the Geometric Algorithm for B-Spline is
presented (the point interpolation and the point-
normal, point-tangent B-Spline interpolation). In
section 4, a modification of the geometric algo-
rithm is presented, in which a non uniform B-
Spline is used to interpolate the curves. In section
5, results will be compared and finally in section
6 conclusion will be presented.

2 BASIC CONCEPTS

A review of B-Splines curves and two methods of
conventional B-Spline curve interpolation is made.

2.1 Non Uniform B-Spline Curves

B-Spline is a Spline function in which a curve of
order k is formed by the joint of several pieces of
polynomials of degree k − 1 with at most Ck−2

continuity at breakpoints. And these breaking
points t0 ≤ t1 ≤ . . . ≤ tn define a knot vec-
tor T = (t0, t1, . . . , tn), which determines the
parametrization of the basis functions Ni,k(t) of
a B-Spline. The B-Spline basis function is defined
as

Ni,1(t) =

{
1, for ti ≤ t < ti+1,
0, otherwise.

(1)

for k = 1, and

Ni,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t)

+
ti+k − t

ti+k − ti+1
Ni+1,k−1(t)

(2)

for k > 1, and i = 0, 1, . . . , n− k.
A B-Spline is defined as a linear combina-

tion of control points and B-Spline basis functions
Ni,k(t) expressed by r(t) =

∑n
i=0 PiNi,k(t), t ∈

[tk−1, tn+1]. A recursive method to obtain the first
and second derivatives of the B-Spline function is
given by (Piegl and Tiller, 1997; Patrikalakis and
Maekawa, 2001)

ṙ(t) =

n∑
i=1

(k − 1)

(
Pi −Pi−1
ti+k−1 − ti

)
Ni,k−1(t),

0 5 10 15 20 25 30

−5

0

5

10

15 B−spline
Control Points
First Derivative
Second Derivative

Figure 1: B-Spline curve with first and second
derivatives.

r̈(t) =

n∑
i=2

(
k − 2

ti+k−2 − ti
k − 1

ti+k−1 − ti
(Pi −Pi−1)

− k − 1

ti+k−2 − ti−1
(Pi −Pi−1)

)
Ni,k−2(t).

At the endpoints the derivatives is given by

ṙ(0) =
(k − 1)

tk
(P1 −P0),

ṙ(1) =
k − 1

tn+k−1 − 1
(Pn −Pn−1),

(3)

for the first derivative, and

r̈(0) =
(k − 1)(k − 2)

tk

[
P0

tk
− tk+1 + tk+2

tk+1.tk+2
P1+

P2

tk+2

]
,

r̈(1) =
(k − 2)(k − 1)

1− tn

[
Pn

1− tn
+

Pn−2
1− tn−1

− 2− tn − tn−1
(1− tn)(1− tn−1)

Pn−1

]
,

(4)

for the second derivative. Fig. 1 shows an example
of a B-Spline with the first and second derivative.

2.2 Standard point Interpolation Method

Given n+ 1 data points, Q0, . . . ,Qn, it is needed
to create a curve that interpolates all the data
points. First, it is needed to create a knot vector
given by

τ0 = 0,

τi = τi−1 +
|Qi −Qi−1|

d
, i = 1, . . . , n

(5)

where d =
n∑
i=1

|Qi −Qi−1|.

For sharp curves, Piegl and Tiller (1997) used
a centripetal method to create the knot vector,
given by

τ0 = 0,

τi = τi−1 +

√
|Qi −Qi−1|

d
, i = 1, l . . . , n

(6)

where d =
n∑
i=1

√
|Qi −Qi−1|. If the B-Spline

curve is a clamped curve, it is used an average
technique to generate the knot vector that is given
by the following rules

t0 = . . . = tk−1 = 0,

tr−k+1 = . . . = tr = 1, r = n+ k,

tj+k−1 =
1

k − 1

j+k−2∑
i=j

τi, j = 1, . . . , n− k + 1.

The standard point interpolation method is the
solution of the following system of linear equations
r(τi) =

∑n
j=0 PjNj,k(τi) = Qi, 0 ≤ i ≤ n. This

system has n + 1 equations with n + 1 variables,
the control points Pj .

2.3 Piecewise Cubic Hermite Interpolation

Piecewise cubic Hermite interpolation can be ob-
tained in the Bézier form by

r(t) =

3∑
j=0

b3i+jBj,3

(
t− τi

τi+1 − τi

)
, t ∈ [τi, τi+1]

where Bj,3 is the Bernstein polynomials of de-

gree 3 and b3i = Pi, b3i+1 = Pi + τi+1−τi
3 di,

b3i+2 = Pi+1 − τi+1−τi
3 di+1 and b3i+3 = Pi+1.

From (Prautzsch et al., 2002) di is estimated by

di = (1− αi)
Qi −Qi−1

τi − τi−1
+ αi

Qi+1 −Qi

τi+1 − τi

with αi = τi−τi−1

τi+1−τi−1
. At endpoints, d0 and dn are

given by

d0 =
2(Q1 −Q0)

τ1 − τ0
− d1,

dn =
2(Qn −Qn−1)

τn − τn−1
− dn−1.

This method uses 3(n+ 1) control points, making
this method requiring three times more control
points compared with the standard point interpo-
lation.

3 INTERPOLATION BY GEOMETRIC
ALGORITHMS

In this section, it is presented the geometric al-
gorithms developed by Maekawa et al. (2007) and
Gofuku et al. (2009). The first, interpolates the
given data points, and the second also secures
the angle of the normal vector in each given data
point. It is used the uniform quadratic B-Spline
given by the expression r(t) = 1

2 (1−t)2Pi−1+ 1
2 +

t− t2Pi + 1
2 t

2Pi+1, i = 1, . . . , n− 1 to interpolate
the points .

3.1 Point Interpolation

The interpolation algorithm introduced by
Maekawa et al. (2007) is divided in two steps.
First, it is assumed that the given data points
(Q0, . . . ,Qn) are the control points of the B-

Spline curve r(1)(t) =
∑n
i=0 P

(1)
i Ni,k(t), where

P
(1)
i = Qi, i = 0, . . . , n.

It is apparent that the B-Spline curve does
not interpolate all the given data points. For each
given point Qi, i = 1, . . . , n − 1 the closest point
in the curve is given by finding the orthogonal
projection onto the curve. To compute this point
it is necessary to solve the nonlinear equation

(Qi − (r(1)(t))) · ṙ(1)(t) = 0. (7)

It is used the Newton’s method to solve (7) and,
according to Gofuku et al. (2009), in the j-step of
Newton’s method, the curve could be linearized by
projecting Qi onto the tangent line of the curve
at ti,j , determining the update ∆t by solving

(Qi − (r(1)(ti,j) + ṙ(ti,j)∆t)) · ṙ(1)(ti,j) = 0.

A second order algorithm developed by Hu and
Wallner (2005) can also be used to find the pro-
jection of the control point. As an initial value
for both methods, the values of the knot vector
in (5) or (6) are used. The resulting parameter
value which satisfy (7) is denoted as t̄i. The sec-
ond step of the algorithm is to offset each control

point P
(1)
i by an error vector e

(1)
i generating new

control points P
(2)
i . So the control points of the

second iteration are given by

e
(1)
i = Qi − r(1)(t̄i),

P
(2)
i = P

(1)
i + e

(1)
i , i = 1, . . . , n− 1.

In the α-th iteration, for each given point Qi, i =
1, . . . , n− 1, it is found its projection onto the B-
Spline curve r(α)(t), defined by its control points

P
(α)
i , i = 0, . . . , n, and the knot vector.

P
(α+1)
i = P

(α)
i + e

(α)
i

= P
(α)
i + Qi − r(α)(t̄i), i = 1, . . . , n− 1

with P
(α)
0 = Q0 and P(α)

n = Qn.
This geometric algorithm repeat this loop un-

til the magnitude of the error becomes smaller
than a tolerance. Maekawa et al. (2007) set a tol-
erance as 0.05% of the bounding box diagonal of
the initial input data points.

3.2 Point-Normal Interpolation

The 2D point-normal interpolation problem can
be solved from the point-tangent interpolation by
taking the cross product of ez = [0 0 1] and ti
generating the normal vector ni = ez × ti, for

ni

ei

fi

gi

Pi+1

Pi

Pi-1

r(ti)

r(ti)

φ

Figure 2: Translation vectors fi, gi and ei.

i = 0, . . . , n. The point interpolation algorithm
introduced the ei error vector that translate the
control points to make the curve pass through to
all given points. For the point-normal problem a
new error vector named fi is introduced; it trans-
lates the control points to correct the angle of the
normal of each point in the curve. Gofuku et al.
(2009) also introduced a new error vector named
gi that is the resulting vector of adding ei with fi
(see Fig. 2). This resulting vector translates the
control points to make the curve tangent to the
given data points and also corrects the angle of
the normal, speeding up the algorithm. fi and gi
vectors are given by the following

fi = r(t̄i)− r(t̂i), i = 1, . . . , n− 1

gi = fi + ei = Qi − r(t̂i), i = 1, . . . , n− 1.

The r(t̂i) point is the place in the curve where
the tangent of this point is orthogonal to the nor-
mal vector ni. It can be computed by solving the
following

ni · ṙα(t) = 0. (8)

To solve (8), it is used the Newton’s method given
by

tβ+1
i = tβi −

ni · ṙα(tβi)

ni · r̈α(tβi)

It is noticed that in straight regions of rα(t), there
are infinite solution making the method unstable.
In such cases, these points are not computed in the
α-th iteration. Then the point-normal geometric
algorithm is updated as following

P
(α+1)
i = P

(α)
i + r(t̄i)− r(t̂i), i = 1, . . . , n− 1

for fi error vector, and

P
(α+1)
i = P

(α)
i + Qi − r(t̂i), i = 1, . . . , n− 1

for gi error vector. To control the angle error it
is introduced the angle between the normal of the
curve (ni) and the rotation of the tangent vector
of the orthogonal projection of the control point
at the curve. And it is given by

ϕi = arccos

{
ni ·

(
ez ×

ṙ(α)(t̄i)

|ṙ(α)(t̄i)|

)}
. (9)

Start

NoYes Dode-operation|ei
(α)|maxd<dε1

maxdd

PointdInterpolationd
Algorithm

|φi|maxd>dδmaxd

Yes

|φi|maxd<dδmaxd

|ei
(α)|maxd<dε2

maxdd

End

Yes

Yes

No

No

No

Dodg-operation

Dodf-operation

Dode-operation

|ei
(α)|maxd>dε2

maxd

&

Figure 3: Global iteration of the point-normal in-
terpolation algorithm.

For each iteration the maximum angle is com-
pared to an angle tolerance. Gofuku et al. (2009)
named this tolerance as δmax and set a tolerance
of one hundredth of the maximum angle com-
puted in the standard point interpolation method
and also warned that if this tolerance is set too
high the algorithm will diverge. The global itera-
tion is illustrated in Fig. 3 and it starts with the
point-tangent algorithm by translating the control

points by the error vector e
(α)
i until |e(α)i |max <

ε1max, this ε1max tolerance is the same used at the
point-tangent interpolation that is 0.05% of the
bounding box diagonal of the given data points.
Once this is satisfied, the control points is trans-

lated with the g
(α)
i error vector until |e(α)i |max <

ε2max and |ϕi|max < δmax, where ε2max is used
as 10−12% of the bounding box diagonal of the

given data points. If |e(α)i |max < ε2max is satisfied,
but |ϕi|max < δmax is not satisfied, the control

points are translated by f
(α)
i error vector, and if

|ϕi|max < δmax is satisfied and |e(α)i |max < ε2max is
not satisfied, we translate the control points with

e
(α)
i . When both conditions are satisfied, the al-

gorithm is finished.

4 EXPANSION TO NON UNIFORM
B-SPLINE

Maekawa et al. (2007) and Gofuku et al. (2009) al-
gorithms utilizes uniform B-spline to interpolate a
set of data point. However, if the distance of the
points is not uniform, it is better to use the equa-
tions of the section 2.1 in both algorithms for bet-
ter results, that is the equations of the definition
of B-spline curves and can be used for uniform
and noun-uniform B-splines, the distance of the
given points do not need to be equidistant. The
calculus of the basis function of the B-spline curve
have a high cost of processing time and also the
majority of the basis functions are null. Piegl and
Tiller (1997) utilizes a method to calculate only

Figure 4: Intervals in which the value of the basis
function is not null.

Start

|φi|max > δmax

Yes

|φi|max < δmax

|ei
(α)|max < ε2

max

End

Yes

Yes

No

No

No

Do g-operation

Do f-operation

Do e-operation

|ei
(α)|max > ε2

max

&

Figure 5: Modified iteration of the point-normal
interpolation algorithm.

the basis functions that are not null, this method
is a binary search that search in which span of the
knot vector T, the value of t is. After finding the
span, the basis functions of the same index of the
span and k − 1 previews index are calculated.

As an example for a quadratic B-spline (k =
3), in Fig. 4 is possible to see that if the value of
t is located in the span 3, the basis function N1,
N2 and N3 are not null and all the others basis
functions are null. Once the value of the B-spline
and the first and second derivatives for a specific
value of t is possible to be calculated, these values
can be used at Maekawa et al. (2007) algorithm
and Gofuku et al. (2009) algorithm in place of the
variables r(t), ṙ(t) and r̈(t). The use of a non
uniform quadratic B-Spline to interpolate a set of
data points that is not equal distanced improved
the algorithm, because if the the control points of
a B-spline curve is not equidistant, the knot vector
T is not uniform and an uniform B-spline curve
can not be used.

Comparing the processing time to calculate
the values of the B-spline and the derivative the
uniform curve is much faster than the non uniform
one, due to this difference of time the algorithm
got slower. Because of it, a modification are made
to make the algorithm faster. The initial part of
Gofuku et al. (2009) algorithm is a first approx-
imation of the interpolative curve to the given
points and it is not necessary, once moving the
control points with the g vector not only the curve
is approximated but also the correction of the an-
gle of the normal vector is made. Eliminating the
first part of the algorithm, the number of iteration

Table 1: Comparing the variation of the ε1max pa-
rameter

ε1max time(s) |e(α)i |max |ϕi|max(rad)
1E-6 73.65 6.4E-15 2.9E-08
1E-4 54.22 5.6E-15 2.9E-08
1E-2 46.98 5.6E-15 2.9E-08
1E+0 42.91 6.6E-15 2.9E-08

-60 -50 -40 -30 -20 -10 0 10 20 30 40

-50

-40

-30

-20

-10

0

10

20

B-spline

Given.Data.Points

Normal.Vector

Original.B-spline

8.95 9 9.05 9.1 9.15 9.2 9.25 9.3 9.35

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 6: Circle involute curve.

to generate the interpolative curve decrease and it
decrease the processing time. It happens because
each iteration, in a case of a quadratic B-spline, it
is needed to calculate 3n values of basis function
with n being the number of points.

Table 1 compares the values of time of the
execution, the max angle(|ϕi|max) and distance

error(|e(α)i |max) from 25 points that generated an
circumference. The variation of ε1max parameter
from 1 ∗ 10−6 to 1 shows that the values of max
angle(|ϕi|max) and distance error(|e(α)i |max) is not
interfered and the time of execution decreased.
With this results the first part of the algorithm
is removed and the final algorithm used in this
work is shown is Fig. 5.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-8

-6

-4

-2

0

2

4

6

8

B-spline

Given Data Points

Normal Vector

Original B-spline

Figure 7: Bowditch curve.

5 RESULTS

In this section, 3 curves are interpolated and com-
pared with the results from (Gofuku et al., 2009).

-25 -20 -15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

B-spline

Given Data Points

Normal Vector

Original B-spline

Figure 8: Epitrochoid curve.

The first curve is a circle involute curve given by

x(t) = a(cos(t) + t sin(t)),

y(t) = a(sin(t)− t cos(t))

with a = 9, and 0 ≤ t ≤ 2π. Fig. 6 shows the 51
given data points together with the curve and the
unit normal vector.

The second curve is a Bowditch curve given
by

x(t) = a sin(ω t+ c),

y(t) = b sin(t)

with a = 9, b = 8, c = 0, ω = 0.75 and −4π ≤ t ≤
4π. Fig. 7 shows the 201 given data points together
with the curve and the unit normal vector.

Finally the third curve is an epitrochoid curve,
given by

x(t) = (a+ b) cos(t)− h cos
(a+ b

b
t
)
,

y(t) = (a+ b) sin(t)− h sin
(a+ b

b
t
)

with a = 10, b = 2, h = 7 and −π ≤ t ≤ π. Fig. 8
shows the 201 given data points together with the
curve and the unit normal vector.

From Table 2 it is possible to see that the re-
sults from the uniform quadratic B-Spline was as
fast as the results from Gofuku and slower than
the conventional method that is so fast that it
was not possible to compute the time. However
the max angle error was worse, so an implemen-
tation using non uniform quadratic B-Spline was
made and also compared. The result was better:
the max angle error and max distance error got
smaller, however the time of execution was much
bigger.

To the second example was made a variation
of the order of the non uniform B-Spline to evalu-
ate the influence of this parameter over the results.
The time of execution, max angle and distance er-
ror were presented in Table 3.

The max angle error got smaller with the in-
creasing of the B-Spline order, however the time

Table 2: Results comparing the time of execution, max distance and angle error of the curves

Max distance error
Curve Gofuku point-normal conventional point Uniform B-Spline Non Uniform B-Spline

Circle involute 7.8E-15 3.2E-13 4.7E-14 7.2E-15
Bowditch 8.6E-12 5.4E-12 2.2E-14 5.7E-15

Epitrochoid 4.8E-14 1.0E-14 9.27E-15 7.2E-15

Max angle error
Curve Gofuku point-normal conventional point Uniform B-Spline Non Uniform B-Spline

Circle involute 2.1E-03 8.2E-01 6.98E-02 2.98E-08
Bowditch 2.4E-02 2.0E+00 1.0E-01 9.56E-04

Epitrochoid 5.0E-03 1.4E-01 2.19E-01 2.98E-08

Time(s)
Curve Gofuku point-normal conventional point Uniform B-Spline Non Uniform B-Spline

Circle involute 2.34 * 0.8 557.64
Bowditch 1.72 * 2.4 75.66

Epitrochoid 1.78 * 2.38 1400.75

Table 3: Comparing the order of the B-Spline

Order time(s) |e(α)i |max |ϕi|max(rad)
3 75.66 5.7E-15 9.56E-04
4 247.34 5.8E-15 2.9E-04
5 875.09 6.6E-15 1.9E-04

of execution increased a lot. This increase is due
to the number times that the B-Spline basis func-
tion is calculated and also the curve is hard to
control, once each point in the curve is influenced
by k numbers of control points, and according to
Piegl and Tiller (1997) in a clamped curve, each
control point have less influence over the curve,
due to the averaging technic to generate the knot
vector.

6 CONCLUSION

The algorithms proposed by Maekawa et al. (2007)
and Gofuku et al. (2009) were successfully imple-
mented. Both algorithms were expanded to use
non uniform B-Splines. Three curves with geo-
metric difficulties (circle involute, bowditch and
epitrochoid) were used as tests. The conventional
interpolation method, and the uniform and the
non uniform B-Spline implementations for the ge-
ometric algorithms were compared. The results
show that the conventional interpolation method
is the fastest algorithm. However, the smallest
error was obtained by the non uniform B-Spline
implementation.

ACKNOWLEDGEMENTS

EK Ueda is supported by CAPES. MSG
Tsuzuki is partially supported by CNPq (grant
309570/2010-7). RY Takimoto is supported
by FAPESP (grant 2011/22402-8). This re-

search is supported by ANEEL project PD-0061-
0033/2011.

References

Gofuku, S, Tamura, S and Maekawa, T (2009).
Point-tangent/point-normal b-spline curve
interpolation by geometric algorithms, CAD
41: 412–422.

Hasegawa, AY, Rosso, RU and Tsuzuki, MSG
(2013). Bezier curve fitting with a parallel
differential evolution algorithm, 11th IFAC
Workshop on Intelligent Manufacturing Sys-
tems., São Paulo, Brazil.

Hu, SM and Wallner, J (2005). A second or-
der algorithm for orthogonal projection onto
curves adn surfaces, CAGD 22: 251–260.

Maekawa, T, Matsumoto, Y and Namik, K (2007).
Interpolation by geometric algorithm, CAD
39: 313–323.

Patrikalakis, NM and Maekawa, T (2001). Shape
Interrogation for Computer Aided Design
and Manufacturing, Springer-Verlag.

Piegl, L and Tiller, W (1997). The NURBS book,
Springer-Verlag.

Prautzsch, H, Boehm, W and Paluszny, M (2002).
Bezier and B-spline Techniques, Springer.

Sobrinho, E, Sanomya, R, Ueda, R, Tiba, H,
Tsuzuki, MSG, Adamowski, JC, Silva, ECN,
carnobari, RC and Buiochi, F (2009). Devel-
opment of a methodology for evaluation of
a structural damage in turbine blades from
hydropower generators, COBEM 2009., Gra-
mado, Brazil.

