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Abstract— This paper investigates the gain-scheduled state feedback control design for continuous-time linear
parameter varying (LPV) systems. It is assumed that the state-space matrices are affine functions of the time-
varying parameters which belong to a known hyper-rectangle. The time-varying parameters are modeled as
symmetric variables to provide new sufficient conditions for the synthesis of the gain-scheduled state feedback
controller. These conditions are formulated in terms of a finite-dimensional set of linear matrix inequalities (LMI).
The exponential stability of the closed-loop system with guaranteed decay rate is ensured based on the existence
of a parameter-independent quadratic Lyapunov function. Numerical results presented for a trajectory tracking
problem of a wheeled mobile robot with longitudinal slip illustrate the benefits of the proposed approach.
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Resumo— Este trabalho investiga o projeto de controladores de realimentação de estados por ganho escalonado
para sistemas lineares a parâmetros variantes (LPV) a tempo cont́ınuo. Assume-se que as matrizes do espaço de
estados são funções afins dos parâmetros variantes que pertencem a um hiper-retângulo conhecido. Os parâmetros
variantes são modelados como variáveis simétricas para fornecer novas condições suficientes para o projeto de
controladores de realimentação de estados por ganho escalonado. Essas condições são formuladas em termos de
um conjunto finito de desigualdades matriciais lineares (LMI). A estabilidade exponencial do sistema em malha
fechada com uma garantida taxa de decaimento é assegurada baseada na existência de uma função de Lyapunov
quadrática. Resultados numéricos apresentados para um problema de rastreamento de trajetórias de um robô
móvel com deslizamento longitudinal das rodas ilustram os benef́ıcios da abordagem proposta.

Palavras-chave— Sistemas LPV; Projeto de controladores por ganho escalonado; LMI; Robôs móveis.

1 INTRODUCTION

In the past few years, linear parameter varying
(LPV) systems have been intensively investigated
due to the great variety of applications in engi-
neering problems such as flight control, missile au-
topilots, aeroelasticity, vibroacustic control, mag-
netic bearings, and robotic systems. Normally,
the LPV models are useful when a single linear
time-invariant (LTI) model is insufficient to rep-
resent the dynamics of a plant. The LPV models
can also be used to represent nonlinear plants in
terms of a family of linear models (Shamma and
Athans, 1991; Lawrence and Rugh, 1995; Rugh
and Shamma, 2000; Paijmans et al., 2008).

In the LPV control framework, the synthe-
sis techniques aim to ensure properties such as
stability, disturbance rejection, and tracking for
a family of linear time-varying (LTV) systems
characterized by a linear model whose dynamics
depend on time-varying parameters. For uncer-
tain parameters, the control design consists in the
synthesis of a single LTI (parameter-independent)
controller that is robust to all possible parame-
ter variations. This approach, called robust con-
trol, requires no information about the parame-
ters besides the knowledge of its minimum and
maximum values. However, the robust controllers
can provide a poor performance when the time-
varying parameters undergo fast and large vari-

ations (Apkarian and Gahinet, 1995; Blanchini
et al., 2007; Oliveira and Peres, 2009).

Considering that the time-varying parameters
can be measured, one way of reducing conser-
vatism is to apply the gain-scheduled approach,
that consists in including the parameter informa-
tion in the controller design. This approach can
provide higher performance due to the adjustment
of the controller in real time to current operat-
ing conditions of the system. Most of the ex-
isting results for gain-scheduled control consider
that the LPV system has a polytopic dependency
on the parameters (Scherer, 2001; Amato et al.,
2005; Lee, 2006; Blanchini et al., 2007; Dong and
Guang-HongYang, 2008; De-Caigny et al., 2012).

This paper provides a new approach to the
synthesis of gain-scheduled state feedback con-
trollers for continuous-time LPV systems with
affine dependency on the parameters. The syn-
thesis problem is reduced to solving a finite-
dimensional set of linear matrix inequalities (LMI)
modeling the time-varying parameters as symmet-
ric variables. Furthermore, the exponential sta-
bility of the closed-loop system with guaranteed
decay rate is ensured based on the existence of
parameter-independent quadratic Lyapunov func-
tion. A trajectory tracking control problem of a
wheeled mobile robot with longitudinal slip illus-
trates the potential real-world implementations of
the proposed approach.



2 PRELIMINARIES

Consider the continuous-time LPV system

ẋ = A(θ(t))x+B(θ(t))u, (1)

where x(t) ∈ R
nx is the state vector and u(t) ∈

R
nu is the control input. The matrices A(·) ∈

R
nx×nx and B(·) ∈ R

nx×nu are affine functions of
θ(t) given in the form

(A(θ(t)), B(θ(t))) = (A0, B0) +
N
∑

i=1

θi(t)(Ai, Bi),

such that θ(t) = (θ1(t), θ2(t), . . . , θN (t)) is the vec-
tor of exogenous non-stationary parameters that
belong to the hyper-rectangle

R := {[θ1min, θ1max]× · · · × [θN min, θN max]} ,

where θimin and θimax are respectively the mini-
mum and maximum values of the parameter θi(t).

Based on Bertsimas and Sim (2004), to each
time-varying parameter θi(t), i = 1, . . . , N , is as-

sociated a new variable ηi(t) :=
(

θi(t)− θ̄i
)

/θ̂i
that takes values in [−1, 1], such that

θi(t) = θ̄i + θ̂iηi(t), (2)

with θ̄i =
θimin + θimax

2
and θ̂i =

θimax − θimin

2
.

3 GAIN-SCHEDULED STATE

FEEDBACK CONTROL DESIGN

This section considers the design of the gain-
scheduled state feedback control law

u = K(θ(t))x, K(·) ∈ R
nu×nx , (3)

for the continuous-time affine LPV system (1).
The aim is to provide a finite-dimensional set of
LMI conditions for the synthesis of a parameter-
dependent state feedback gain K(·) such that the
closed-loop system

ẋ = Acℓ(θ(t))x, (4)

with

Acℓ(θ(t)) = A(θ(t)) +B(θ(t))K(θ(t)), (5)

is exponentially stable with a guaranteed decay
rate α > 0 for all possible trajectories of θ(t) ∈ R.
According to Boyd et al. (1994), the decay rate of
a continuous-time linear system is defined as the
largest α such that

lim
t→∞

eαt‖x(t)‖ = 0

holds for all nonzero solutions x(t).
Based on the existence of a parameter-

independent quadratic Lyapunov function, a suf-
ficient condition to ensure exponential stability of
the system (4) with a guaranteed lower bound on
the decay rate is given by the following lemma.

Lemma 1 If there exists a constant α > 0 and a

symmetric positive-definite matrix W such that

Ψ(θ(t)) := WAcℓ(θ(t))
′

+Acℓ(θ(t))W + 2αW ≤ 0, (6)

for all θ(t) ∈ R, t ≥ 0, then the closed-loop sys-

tem (4) is exponentially stable with a guaranteed

decay rate α.

The proof of Lemma 1 is a straightforward
extension of the proof presented in Boyd et al.
(1994) for uncertain LTI systems.

Lemma 1 consists in evaluating the
parameter-dependent LMI (6) for all θ(t) ∈ R,
which leads to an infinite-dimensional problem.
However, a finite-dimensional set of sufficient
LMI conditions can be obtained in two steps.
First, the LMI (6) must be rewritten in terms of
η(t) = (η1(t), η2(t), . . . , ηN (t)), using the change
of variables (2). For example:

A(θ(t)) = A0 +

N
∑

i=1

θi(t)Ai = A0 +

N
∑

i=1

θ̄iAi+

N
∑

i=1

θ̂iηi(t)Ai = A(θ̄) +
N
∑

i=1

θ̂iηi(t)Ai = A(η(t)).

Following this example, the LMI (6) can be rep-
resented in terms of η(t), as follows:

Ψ(η(t)) = WAcℓ(η(t))
′

+Acℓ(η(t))W + 2αW ≤ 0. (7)

Since the LMI (7) is still numerically unverifiable,
the next proposition is used in the second step to
obtain a finite-dimensional set of sufficient LMI
conditions.

Proposition 1 Let a matrix X ∈ R
nx×nx . If

there exists a matrix Y ∈ R
nx×nx , such that,

Y ≥ X and Y ≥ −X , then, Y ≥ ξX for all

ξ ∈ [−1, 1].

Proof: By multiplying the inequalities Y ≥ X
and Y ≥ −X by v ∈ R

nx on the left and by v′

on the right, it yields in the scalar inequalities
v′Yv ≥ v′X v and v′Yv ≥ −v′X v, respectively.
Thus, v′Yv ≥ |v′X v| ≥ ξ v′X v for all ξ ∈ [−1, 1].
Consequently, Y ≥ ξX for all ξ ∈ [−1, 1]. 2

It is worth to mention that the scalar case
of Proposition 1 is used in Bertsimas and Sim
(2004) to provide a robust formulation for lin-
ear programming problems subject to data uncer-
tainty. In this paper, Proposition 1 together with
Lemma 1 are used to provide a sufficient condition
for the existence of a parameter-dependent state
feedback gain. This is the context of the next the-
orem.



Theorem 1 If there exists a constant α > 0,
symmetric positive-definite matrix W ∈ R

nx×nx ,

matrices Vℓ ∈ R
nu×nx and symmetric matrices

Xi ∈ R
nx×nx , Yjk ∈ R

nx×nx and Zi ∈ R
nx×nx ,

for i = 1, . . . , N , j = 1, . . . , N−1, k = j+1, . . . , N
and ℓ = 0, . . . , N , such that

Υ(θ̄) +

N
∑

i=1

(

θ̂iXi + θ̂2iZi

)

+

N−1
∑

j=1

N
∑

k=j+1

θ̂j θ̂kYjk

≤ 0 (8)

with

Xi ≥ Φi, Xi ≥ −Φi,
Yjk ≥ Γjk, Yjk ≥ −Γjk,
Zi ≥ Ωi, Zi ≥ −Ωi,

(9)

where

Υ(θ̄) = WA(θ̄)′ +A(θ̄)W + V (θ̄)′B(θ̄)′

+B(θ̄)V (θ̄) + 2αW,

Φi = WA′

i +AiW + V ′

i B(θ̄)′ +B(θ̄)Vi

+ V (θ̄)′B′

i +BiV (θ̄),

Γjk = V ′

jB
′

k +BkVj + V ′

kB
′

j +BjVk,

Ωi = V ′

i B
′

i +BiVi,

for all i = 1, . . . , N , j = 1, . . . , N − 1 and k =
j + 1, . . . , N , then the parameter-dependent state

feedback gain

K(θ(t)) = K0 +

N
∑

i=1

θi(t)Ki,

with Kℓ = VℓW
−1, for ℓ = 0, . . . , N , assures that

the closed-loop system (4)-(5) is exponentially sta-

ble with a guaranteed decay rate α for all possible

trajectories of θ(t) ∈ R.

Proof: Using the closed-loop matrix (5) and
change of variables V (θ(t)) = K(θ(t))W , one has
that the left-hand side of the LMI (6) is given by

Ψ(θ(t)) = Υ(θ(t)).

Applying the change of variables (2), one has

Ψ(θ(t)) = Υ(θ̄) +

N
∑

i=1

(

θ̂iηi(t)Φi + θ̂2i η
2
i (t)Ωi

)

+

N−1
∑

j=1

N
∑

k=j+1

θ̂j θ̂kηj(t)ηk(t)Γjk = Ψ(η(t)).

Defining the symmetric matrices Xi, Yjk and
Zi for i = 1, . . . , N , j = 1, . . . , N − 1 and k =
j + 1, . . . , N , such that (9) holds, then by Propo-
sition 1

Xi ≥ ηi(t)Φi,

Yjk ≥ ηj(t)ηk(t)Γjk,

Zi ≥ η2i (t)Ωi,

for all t ≥ 0 since ηi(t), ηj(t)ηk(t) and η2i (t) belong
to the interval [−1, 1].

Finally, one has

Ψ(θ(t)) ≤ Υ(θ̄) +

N
∑

i=1

(

θ̂iXi + θ̂2iZi

)

+

N−1
∑

j=1

N
∑

k=j+1

θ̂j θ̂kYjk.

Thus, the feasibility of (8) implies the feasibility of
(6). Consequently, the closed-loop system (4)-(5)
is exponentially stable with a guaranteed decay
rate α for all possible trajectories of θ(t) ∈ R. 2

Theorem 1 provides a sufficient condition for
the synthesis of a gain-scheduled state feedback
controller. The parameter-dependent gain of the
controller is obtained solving a feasibility test of a
finite-dimensional set of LMI. The numeric com-
plexity associated to an optimization problem for-
mulated in terms of LMI can be estimated from
the number of scalar variables and of LMI rows
(Boyd et al., 1994). The LMI conditions of The-
orem 1 requires checking nx(N

2 + 3N + 2) LMI
rows and uses nx(nx + 1) (N(N + 3)/4 + 1/2) +
nx(N + 1)nu scalar variables.

4 WHEELED ROBOT APPLICATION

This section presents an application of the gain-
scheduled control design to a trajectory track-
ing control problem of a wheeled mobile robot
(WMR) with longitudinal slip.

4.1 Model of a Wheeled Mobile Robot

X

Y

φ

X0

Y0

X1

Y1

b

ω

v

Figure 1: schematic model of a WMR.

Figure 1 shows the schematic model of a
WMR. The posture of the robot, in an inertial
coordinate frame (X0, Y0), is described by its cen-
ter position (X(t), Y (t)) ∈ R

2 and its orientation
φ(t) ∈ R. The distance between the centerlines
of the two wheels is b > 0. The robot translation



velocity is denoted by v(t) ∈ R and its rotational
velocity by ω(t) ∈ R.

Denoting the posture of the robot by q(t) =
(X,Y, φ)′ ∈ R

3, the kinematic model of the WMR
with slip, as presented in Gonzales et al. (2009)
and Iossaqui et al. (2011), is given by

q̇ =
r

2b





bal(t) cosφ bar(t) cosφ
bal(t) sinφ bar(t) sinφ
−2al(t) 2ar(t)



u (10)

where r > 0 is the radius of wheels, u(t) =
(ωl, ωr)

′ ∈ R
2 is the control input composed by

the angular velocities of the left and right wheels,
ωl(t) ∈ R and ωr(t) ∈ R, and 0 < al(t) ≤ 1 and
0 < ar(t) ≤ 1 are the longitudinal slip parameters
of the left and right wheels, respectively. The slip
parameter equals one means that the wheel rolls
without slipping.

4.2 Trajectory Tracking Control Problem

Following Iossaqui et al. (2011), the trajectory
tracking control problem consists in providing a
control input u = (ωl, ωr)

′ for the WMR such that

lim
t→∞

(qref(t)− q(t)) = 0,

where the robot posture q(t) = (X,Y, φ)′ ∈ R
3 is

given by (10) and the reference trajectory qref(t) =
(Xref , Yref , φref)

′ ∈ R
3 is generated using the kine-

matic model

q̇ref =





cosφref 0
sinφref 0

0 1



uref , (11)

where uref(t) = (vref(t), ωref(t))
′ ∈ R

2 is the ref-
erence input composed by the linear and angular
velocites, vref(t) ∈ R and ωref(t) ∈ R.

To ensure the robot trajectory q will follow
the desired reference trajectory qref , we define the
posture error x(t) = (x1, x2, x3)

′ ∈ R
3 as follows





x1

x2

x3



=





cosφ sinφ 0
− sinφ cosφ 0

0 0 1









Xref −X
Yref − Y
φref − φ



. (12)

The dynamics of the posture error x, derived
using (10)-(12), is given by ẋ = f(t, x, u), with

f =
r

2b





2g1(t)x2 + vref(t) cosx3 − bg2(t)
−2g1(t)x1 + vref(t) sinx3

ωref(t)− 2g1(t)



 ,

where g1(t) = ωr/ar(t) − ωl/al(t) and g2(t) =
ωr/ar(t) + ωl/al(t).

For the posture error to maintain equilibrium
at x = 0, the control input u must have a steady-
state component uss satisfying f(t, 0, uss) = 0,
that results in

uss =
1

2ral(t)ar(t)

(

ar(t)(2vref(t)− bωref(t))
al(t)(2vref(t) + bωref(t))

)

.

Choosing the control input as u = uff +ufb, with
the feedforward part uff = uss and the feedback
part ufb to be determined using the LMI thec-
nique proposed by Theorem 1, one has

ẋ = f(t, x, ufb), (13)

such that f(t, 0, 0) = 0. Thus, following The-
orem 4.15 from Khalil (2001), the exponentially
stability of the origin of the nonlinear system (13)
is ensured designing the stabilizing controller ufb

for the linearization of (13).
Linearization of (13) about the origin is given

by the affine LPV system

ẋ = A(θ(t))x+B(θ(t))u, (14)

where θ(t) = (vref(t), ωref(t), al(t), ar(t)),

A(θ(t)) =





0 ωref(t) 0
−ωref(t) 0 vref(t)

0 0 0



 , and

B(θ(t)) =
r

2b





−bal(t) −bar(t)
0 0

2al(t) −2ar(t)



 .

Figure 2 shows the schematic representation
of the closed-loop system composed of the refer-
ence trajectory, the proposed controller, and the
robot.
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Figure 2: nonlinear closed-loop system.

4.3 Synthesis and Assessment of the Controller

This section shows the numerical results for the
gain-scheduled state feedback control proposed in
Section 3 applied to the trajectory tracking control
problem presented in Section 4.2.

To evaluate the influence of the decay rate α
on the performance of the proposed controller, it
is designed two controllers, K0.001 and K0.005, ob-
tained from Theorem 1 adopting α = 0.001 and
α = 0.005, respectively. These controllers are
also compared to the gain-scheduled state feed-
back controller KMon provided by the LMI condi-
tions from Montagner et al. (2005, Theorem 1).
The physical parameters for the model of the
WMR, taken from Ryu and Agrawal (2011), are
b = 0.1624 m and r = 0.0825 m. The initial
conditions for the posture of the robot and the
reference trajectory are q(0) = (0,−0.5, 0)′ and
qref(0) = (0, 0, 0)′, respectively.
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Figure 3: time-varying parameters.
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Figure 4: robot trajectory.

Figure 3 shows the values adopted in the
numerical simulation for the reference input
uref(t) = (vref(t), ωref(t))

′ and the slip param-
eters al(t) and ar(t). For the synthesis proce-
dures, it is assumed that vref(t) ∈ [0.01, 2.00 m/s],
ωref(t) ∈ [−π, π rad/s], al(t) ∈ [0.01, 1.00], and
ar(t) ∈ [0.01, 1.00].

Figure 4 shows the reference trajectory qref
and the robot trajectories q obtained using con-
trollers K0.001, K0.005, and KMon. It can be seen
that the robot trajectory converges to the refer-
ence trajectory.

Figure 5 shows the posture error x =
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Figure 5: posture error.

(x1, x2, x3)
′. For all the designed controllers the

posture error converges to zero. Controller K0.001

provided worse results than controller KMon.
However, the performance of the synthesized con-
trollers by Theorem 1 can be further improved
with larger α. As illustration, note that con-
troller K0.005 provided better results than both
controllers K0.001 and KMon. Finally, comparing
the numerical complexity of the synthesis proce-
dures, Theorem 1 demands 120 scalar variables
and 90 LMI rows while that the conditions from
Montagner et al. (2005, Theorem 1) demands 102
and 411, respectively.



5 CONCLUSIONS

New LMI conditions were presented for the
synthesis of gain-scheduled state feedback con-
trollers for continuous-time affine LPV systems
based on the existence of a parameter-independent
quadratic Lyapunov function. The synthesis pro-
cedure allows to choose a decay rate for the closed-
loop system, thus the controller can be designed
to satisfy performance specifications.

The performance of the proposed approach
was demonstrated on a nonlinear trajectory track-
ing control problem of a WMR with longitudinal
slip. It was proposed a feedforward control that al-
lows the linearization necessary to apply the LPV
technique. The synthesized controllers perform
well and withstand wheel slip. For the appro-
priate decay rate, the proposed approach outper-
forms Montagner et al. (2005, Theorem 1), with
less numerical complexity.
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