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Abstract— In this paper we introduce two novel techniques for local linear modeling of dynamical system
identification. As in standard local model building, we use a vector quantization algorithm, such as the Self-
Organizing Map, to partition the joint input-output space into smaller regions. Then, to each neuron we associate
a coefficient vector which must be suitably estimated. A comprehensive evaluation of the proposed techniques is
carried out for the task of inverse system identification of one benchmarking Single Input/Single Output (SISO)
dynamical system. Their performances are compared to those achieved by the Multilayer Perceptron and the
Extreme Learning Machine networks. We also evaluate how robust are the proposed techniques with respect
to the vector quantization algorithm used to partition the input-output space. The results show that proposed
techniques perform better than standard ones for evaluated dataset.

Keywords— Vector quantization, local linear models, nonlinear system identification.

Resumo— Neste trabalho, nós introduzimos duas novas técnicas para modelagem linear local para identifica-
ção de sistemas dinâmicos. Como padrão de construção do modelo local, nós usamos um algoritmo de quantização
vetorial, tal como o Mapa Auto Organizável, para partição do espaço conjunto de entrada-sáıda em regiões me-
nores. Então, para cada neurônio nós associamos um vetor de coeficientes que deve ser estimado adequadamente.
Uma avaliação abrangente das técnicas propostas é realizada para tarefa de identificação inversa de um sistema
dinâmico padrão do tipo Única Entrada/Única Sáıda. Seus desempenhos são comparados com aqueles realizados
pelas redes Perceptron de Múltiplas Camadas e a Máquina de Aprendizagem Extrema. Nós também avaliamos
quanto robusto são as técnicas propostas com respeito ao algoritmo de quantização vetorial usado para partici-
onar o espaço de entrada-sáıda. Os resultados mostram que as técnicas propostas se apresentaram melhores do
que as técnicas padrões para o conjuntos de dados avaliado.

Palavras-chave— Quantização vetorial, Modelos lineares locais, Identificação de sistemas não lineares.

1 Introduction

Modern industrial plants have been the source of
challenging tasks in dynamical system identifica-
tion and control (Peng et al., 2007). In particular,
the design of control systems to achieve the level of
quality demanded by current industry standards
requires building accurate models of the plant be-
ing controlled.

Since data are usually available in the form of
input and output time series, these can be used for
building direct and/or inverse models of nonlinear
systems by means of computational intelligence
methods, such as neural networks (Barreto and
Araújo, 2004), Takagi-Sugeno-Kang fuzzy mod-
els (Rezaee and Fazel Zarandi, 2010) or hybrid
neuro-fuzzy systems (Rubio, 2009), to mention
just a few possibilities. Although several tech-
niques for nonlinear dynamical system identifica-
tion have been proposed (Norgaard et al., 2000),
they can be categorized into one of the following
approaches: global, local and hybrid models.

In the neural network literature, local mod-
eling techniques have been implemented mostly
using the Self-Organizing Map (SOM) to parti-

tion the input-ouput space into smaller regions,
over which the local models are built (Papadakis
and Kaburlasos, 2010; Liu and Djurdjanovic,
2008; Barreto and Souza, 2006). The SOM is
an unsupervised competitive learning algorithm
which has been commonly applied to cluster-
ing, vector quantization and data visualization
tasks (Kohonen, 2013). The results reported on
those studies are rather appealing, indicating that
SOM-based local models can be feasible alterna-
tives to global models based on supervised neu-
ral network architectures, such as the Multilayer
Perceptron (MLP) and the Extreme Learning Ma-
chine (ELM) (Huang et al., 2006).

An important limitation of the aforemen-
tioned local linear models is that they were specif-
ically designed to use the SOM algorithm. This
means that their performances degrade consid-
erably if another vector quantization (VQ) al-
gorithm is used. The main advantage in us-
ing other VQ algorithm than the SOM to par-
tition the input-output space is related to com-
putational costs. There are several VQ al-
gorithms available (Vasuki and Vanathi, 2006),
such as the K-Means (Darken and Moody, 1990)



and the Frequency-Sensitive Competitive Learn-
ing (FSCL) (Ahalt et al., 1990), which are con-
siderably lighter than the SOM and still achieve
equivalent data partitioning results.

More recently, a general methodology for
building and evaluating local linear models with
respect to their robustness (i.e. insensitiveness)
to changes in the VQ algorithm has been pro-
posed in Souza and Barreto (2010). This method-
ology evaluates if the difference between two dis-
tributions of residuals generated by the same local
model using two different VQ algorithms are sta-
tistically significant. For this purpose, the non-
parametric Kolmogorov-Smirnov hypothesis test
was used. By using this methodology, it was
shown that the SOM can be successfully replaced
with a lighter VQ algorithm (e.g. the FSCL) with-
out performance loss.

A comprehensive evaluation of the proposed
approaches is carried out for the task of in-
verse system identification of one benchmarking
single-input/single-output (SISO) dynamical sys-
tem. Their performances are compared to those
achieved by linear and nonlinear global models,
and other local linear modeling techniques avail-
able in the literature. In addition, we perform a
thorough statistical analysis of the residuals for
model validation purposes and also evaluate how
robust are the proposed techniques with respect
to the VQ algorithm used to partition the input-
output space.

The remainder of the paper is organized as fol-
lows. In Section 2, the proposed linear local mod-
els approaches are then presented. Comprehen-
sive computer simulations and performance anal-
ysis of the proposed approaches are presented in
Section 3. The paper is concluded in Section 4.

2 The Proposed Approaches

The algorithms to be described in this section are
based on the KSOM architecture that was recently
proposed as a model to solve system identification
problems, such as inverse modeling of real indus-
trial plant (Souza and Barreto, 2008). For train-
ing purposes, the KSOM algorithm depends on
the VQTAM1 model (Barreto and Araújo, 2004),
which is a simple extension of the SOM algorithm
that simultaneously performs vector quantization
on the input and output spaces of a given nonlin-
ear mapping.

According to the VQTAM framework, the in-
put vector to the SOM at time step t, x(t), is
composed of two parts. The first part, denoted
xin(t) ∈ Rp+q, carries data about the input of the
dynamic mapping to be learned. The second part,
denoted xout(t) ∈ R, contains data concerning the
desired output of this mapping. The weight vec-
tor of neuron i, wi(t), has its dimension increased

1Vector-Quantized Temporal Associative Memory

accordingly. These changes are formulated as fol-
lows:

x(t) =

(
xin(t)
xout(t)

)
and wi(t) =

(
win

i (t)
wout

i (t)

)
(1)

where win
i (t) ∈ Rp+q and wout

i (t) ∈ R are, re-
spectively, the portions of the weight (prototype)
vector which store information about the inputs
and the outputs of the desired mapping.

Depending on the variables chosen to build
the vector xin(t) and scalar xout(t) one can
use the SOM algorithm (or any other VQ algo-
rithm) to learn the forward or the inverse map-
ping of a given dynamic system. For the in-
verse identification task we are interested in,
we have the following definitions: xin(t) =

[u(t− 1), . . . , u(t− q); y(t− 1), . . . , y(t− p)]
T
and

xout(t) = u(t) (Norgaard et al., 2000).
The winning neuron at time t is de-

termined based only on xin(t): i∗(t) =
argmin∀i∈A{∥xin(t)−win

i (t)∥}. For updating the
weights, both xin(t) and xout(t) are used:

∆win
i (t+ 1) = α(t)h(i∗, i; t)[xin(t)−win

i (t)], (2)

∆wout
i (t+ 1) = α(t)h(i∗, i; t)[xout(t)− wout

i (t)], (3)

where 0 < α(t) < 1 is the learning rate, and
h(i∗, i; t) is a time-varying Gaussian neighborhood
function. Both parameters are calculated similar
to the basic SOM algorithm.

2.1 Local Linear Model Based on the K Nearest
Prototypes

The first algorithm to be described is called
Prototype-based Multiple KSOM Model (P-
MKSOM), and it was initially proposed in Souza
and Barreto (2010). The first step in building
the P-MKSOM model requires the VQTAM
approach. The P-MKSOM model building starts
once VQTAM training is finished.

Firstly, let j
(i)
k denote the k-th nearest neigh-

bor of neuron i. Thus, find the K nearest neigh-
bors of the prototype vector win

i as follows:

i1 = arg min
∀j ̸=i

{
∥win

i −win
j ∥

}
,

...
...

... (4)

iK = arg min
∀j ̸={i,i1,...,iK−1}

{
∥win

i −win
j ∥

}
,

where Ji = i∪{ik}Kk=1 is the set containing the in-
dexes of the K nearest neighbors of the prototype
vector win

i , including neuron i.
Once the set Ji is determined for each neu-

ron i, we build N local regression models using
the prototype vectors whose indexes belong to Ji.
Thus, associated to neuron i, we have a coefficient
vector ci ∈ Rp+q computed using the least-squares

method: ci =
(
RT

i Ri + λI
)−1

RT
i b

out
i , where I is



a identity matrix of order (p + q) × (p + q) and
λ > 0 (e.g. λ = 0.001) is a small regularization
constant. The vector bout

i ∈ RK+1 is comprised of
the output parts of theK prototype vectors whose
indexes belong to Ji, i.e.

bout
i =

[
wout

i wout
i1 · · · wout

iK

]T
, (5)

and the matrix Ri ∈ R(K+1)×(p+q) is comprised of
the input parts of the same K prototype vectors:

Ri =

 win
i,1 win

i,2 · · · win
i,p+q

...
...

...
...

win
iK ,1 win

iK ,2 · · · win
iK ,p+q

 ,(6)

where the superscript T denotes the transpose vec-
tor/matrix.

Once the N local regression models are built,
they can be used to approximate the output of
the nonlinear mapping of interest. Recall that
the P-MKSOM model requires one local model
(and hence, one vector of coefficients) per neuron.
Which one to use at time t is defined by the index
of the winning neuron, i∗(t).

Since we are interested in inverse system iden-
tification, the P-MKSOM model estimates the
current input u(t) by means of the following equa-
tion: û(t) = cTi∗x

in(t), where the estimation error
(residual) at time t is defined as e(t) = u(t)− û(t).

2.2 Local Linear Model Estimation Based on the
Data Vectors Mapped to the K Nearest Pro-
totypes

The second proposed approach, called Data-based
Multiple KSOM Model (D-MKSOM), is similar to
the P-MKSOM model, differing only in the way
the vectors of coefficients ci, i = 1, ..., N , are es-
timated. Instead of using the prototype vector
of neuron i and of its K nearest neighbors, the
D-MKSOM model computes the vector of coef-
ficients ci of neuron i using the (training) data
vectors that are mapped to that neuron and to its
K nearest neighbors. In other words, in order to
estimate the vector ci, the D-MKSOM model uses
all the (training) data vectors belonging to the re-
gion formed by the Voronoi cells of neuron i and
of its K nearest neighbors.

The first and second steps in building the D-
MKSOM model are the same as that for the P-
MKSOM: (i) train the VQTAM model using the
available training data. (ii) Then, find the set
Ji = i ∪ {ik}Kk=1 containing the indexes of the
K nearest neighbors of the prototype vector win

i ,
i = 1, ..., N , as defined in (4).

A third step is necessary and consists in find-
ing the set of (training) data vectors that are
mapped to the prototypes win

i , win
i1
, win

i2
, . . . ,

win
iK
, for i = 1, . . . , N .

Let n(i) be the number of input vectors xin ∈
Rp+q mapped to the Voronoi cell of neuron i. Sim-
ilarly, let n(ik) be the number of input vectors

xin ∈ Rp+q mapped to the Voronoi cell of k-th
nearest neighbor of neuron i. Hence, the total
number of vectors mapped to neuron i and its K
nearest neighbors is given by ni = n(i) + n(i1) +
n(i2) + · · ·+ n(iK).

Also, let Xin
i be a (p + q) × n(i) data matrix

whose columns are the vectors xin mapped to the

Voronoi cell of neuron i. Finally, let xout
i ∈ Rn(i)

the vector containing the target outputs xout as-
sociated with the vectors xin ∈ Xin

i .
By the same token, Xin

ik
is a (p+q)×n(ik) data

matrix whose columns are the vectors xin mapped
to the Voronoi cell of neuron ik, k = 1, . . . ,K.

Accordingly, xout
ik

∈ Rn(ik)

is the vector containing
the target outputs xout associated with the vectors
xin ∈ Xin

ik
.

Once the pairs {Xin
i ,xout

i }, {Xin
i1
,xout

i1
},

{Xin
i2
,xout

i2
}, . . ., {Xin

iK
,xout

iK
}, are determined for

neuron i and itsK nearest neighbors, we can build
the local linear model for neuron i.

For this purpose, assuming that the sets xout
i

and xout
ik

, k = 1, . . . ,K are arranged as column
vectors, we build the vector bout

i ∈ Rni as follows:

bout
i =

[
xout
i ;xout

i1
; . . .xout

iK

]T
ni×1

. (7)

Similarly, the regression matrix Ri ∈
Rni×(p+q) is built using the data matricesXin

i and
Xin

ik
, k = 1, . . . ,K, as follows:

Ri =


(
Xin

i

)T(
Xin

i1

)T
...(

Xin
iK

)T


ni×(p+q)

, (8)

where the superscript T denotes the transpose of
a vector/matrix.

Hence, the vector of coefficients of neuron i,
ci ∈ Rp+q, is estimated using the regularized lest-

squares method as ci =
(
RT

i Ri + λI
)−1

RT
i b

out
i ,

where I is a identity matrix of dimension (p+q)×
(p + q) and λ > 0 (e.g. λ = 0.001) is a small
regularization constant.

Once the N local regression models are built,
they can be used to approximate the output of
the nonlinear mapping of interest. Recall that in
this paper we are interested in the inverse iden-
tification problem. Thus, the D-MKSOM model
estimates u(t) by means of the following equa-
tion: û(t) = cTi∗x

in(t), where the estimation error
(residual) at time t is defined as e(t) = u(t)− û(t).

3 Computer Simulations and Discussion

The performances of the proposed SOM-based
local linear models are compared to MLP- and
ELM-based global models in the task of in-
verse system identification. We also compare the
proposed models with other local modeling ap-
proaches, such as the VQTAM, KSOM and the



Local Linear Mapping (LLM) (Walter et al., 1990).
The LLM associates a linear model to each neuron
in the SOM and estimates their vectors of coeffi-
cients using a variant of the least mean squares
(LMS) adaptation rule. All simulations were car-
ried out in Matlab R⃝.

All the models are initially evaluated via the
statistics of the normalized mean-squared estima-
tion error (NMSE) computed for the testing time

series: NMSE =
∑M

t=1 e
2(t)/M · σ̂2

u = σ̂2
e/σ̂

2
u,

where σ̂2
u is the variance of the original time series

{u(t)}Mt=1 and M is the length of the sequence of
residuals for the testing time series.

Additionally, a residual analysis is presented
for the best models. Finally, hypothesis testing
is carried out to analyze the influence of the VQ
algorithm on the performance of the local models.
Each hypothesis testing is implemented through
the Kolmogorov-Smirnov test (Soong, 2004) on
the estimation error distribution generated by a
given model.

The heat exchanger data set comes from a
liquid-satured steam heat exchanger (Bittanti and
Piroddi, 1997), where water is heated by pressur-
ized saturated steam through a copper tube. The
motivation for the choice of the heat exchanger as
a benchmark is that this plant is characterized by
a non-minimum phase behavior which makes the
design of controllers particulary challenging even
in a linear context. The measured values of the
liquid flow rate (in m3/s) defines the input time
series, while the outlet liquid temperature (in Cel-
sius degrees) defines the output time series. The
sampling rate was set to 1s.

Results on the NMSE criterion: We included
performance results of variants of the P-MKSOM
and D-MKSOM models obtained by replacing the
SOM with other VQ algorithms in the VQTAM
model. All the models were trained using the first
2200 samples of the input/output time series, val-
idated with the following 1000 samples and tested
with the remaining 800 samples. Input/output
time series were rescaled to the [−1,+1] range.

The best configuration found for the MLP-
1h and MLP-LM models has 20 hidden neu-
rons (100 independent training/validation runs for
each value of N in the range of 2 to 50). The
number of neurons of the first hidden layer of the
MLP-2h model was then set to 20, while for the
second hidden layer it was set to half the number
of neurons of the first hidden layer. The MLP-1h
and MLP-LM were trained with constant learning
rate equal to 0.1. For the ELM model, the num-
ber of hidden neurons was set to 20, same value
used by the MLP-1h and MLP-LM models. The
memory orders were set to p = 6 and q = 3, re-
spectively.

The best number of neurons found for the
VQTAM model after experimentation on the val-

Table 1: Performance results for the heat ex-
changer data.

Neural NMSE
Models mean min max std

ELM 0.3346 0.3316 0.3391 1.50e-03
D-MKSOM 0.3798 0.3657 0.3918 4.63e-03
MLP-1h 0.4292 0.4173 0.4501 6.34e-03

P-MKSOM 0.5640 0.4137 0.8118 0.1044
MLP-LM 0.5672 0.2140 0.6016 0.0692
KSOM 0.5841 0.4139 1.3877 0.1431

VQTAM-T 0.7701 0.4774 1.2345 0.1330
LLM 0.7837 0.7378 0.8702 0.0242
Linear 0.9257 0.9257 0.9257 2.30e-07

VQTAM-G 1.2396 1.1828 1.3129 0.0253
MLP-2h 1.3003 1.2207 1.5466 0.0768

Table 2: Performance results for the P-MKSOM
and D-MKSOM models using different VQ algo-
rithms (heat exchanger data).

P-MKSOM Method
VQ NMSE

Algorithms mean min max std

SOM 0.5640 0.4137 0.8118 0.1044
WTA 0.6026 0.5382 0.6713 0.0316

K-means 0.6744 0.6503 0.6758 4.35e-03
FCL 1.4722 1.3263 1.7196 0.0831
FSCL 1.5817 1.2887 2.4085 0.3259

D-MKSOM Method
VQ NMSE

Algorithms mean min max std

SOM 0.3798 0.3657 0.3918 4.64e-03
FCL 0.4054 0.3770 0.4311 0.0112
WTA 0.4066 0.3941 0.4423 9.22e-03
FSCL 0.4082 0.3969 0.4304 7.79e-03

K-means 0.4083 0.4001 0.4170 3.42e-03

idation set was N = 30 (100 independent train-
ing/validation runs for each value of N ranging
from 5 to 50). This number of neurons was then
used by all the other SOM-based models. The ini-
tial and final learning rates were set to α0 = 0.5
and αT = 0.001. The initial and final values of
the neighborhood function radius are σ0 = N/2
and σT = 0.001. The learning rate for the LMS
part of the LLM model was set to 0.1. The op-
timal number of nearest neighbors for the KSOM
was found to be around K = 20 (100 indepen-
dent training/validation runs for each value of K
ranging from 1 to 30). This value was then used
by the P-MKSOM and D-MKSOM models. The
obtained results are shown in Table 1.

This time, the best performance was achieved
by the ELM global model. Note, however, the
performance of the D-MKSOM model is better
than the MLP-1h model and it is comparable to
that of the ELM model. Again, the VQTAM with
topological interpolation performed better than
the one with geometric interpolation. It is worth
noting that, this time, among the five best ranked
models, three of them are global nonlinear models.

The influence of the VQ algorithm on the per-
formances of the P-MKSOM and D-MKSOM ap-



proaches is analyzed in Table 2 for the heat ex-
changer dataset. The local models in question are
implemented using the following VQ algorithms:
K-means, WTA, FSCL and FCL. By analyzing
this table we can observe that, for both the P-
MKSOM and D-MKSOM methods, the best local
models were the ones generated by the SOM, an
possible indication that topology preservation is
important for the proposed models.

Residual Analysis: It is an important tool for
model validation, since it allows the user to assess
how well the model learns the dynamics of the
training data and how well it respects the model-
ing assumptions. The most common modeling as-
sumption is that noise resembles a Gaussian white
noise process (Norgaard et al., 2000). By analyz-
ing the sequence of residuals produced by each
model (local and global ones) using the testing
data, the user can assess the degree of matching
between the statistical properties of the sequence
of residuals and the theoretic modeling assump-
tions.

For nonlinear models, the statistical tests used
for validating of the identified model are listed be-
low (Billings and Zhu, 1994):

Φee(τ) = E{e(t− τ)e(t)} = δ(τ) (9)

Φue(τ) = E{u(t− τ)e(t)} = 0,∀τ (10)

Φu2′e(τ) = E{[u2(t)− u2(t)]e(t− τ)} = 0,∀τ (11)

Φu2′e2(τ) = E{[u2(t)− u2(t)]e2(t− τ)} = 0,∀τ (12)

where E{·} denotes the expected value operator,
e(t) denotes the residual (error) obtained by the
model at time t using testing data, u(t) is the
corresponding input sample, and δ(τ) is the Kro-
necker delta function. The overbar denotes the
time average operation. The prime symbol (′) in
Equations (11)-(12) denotes that the mean level
has been removed from the corresponding data se-
quence.

The results on the estimation of the linear and
nonlinear ACF’s/XCF’s are shown in Figure 1.
We shown only the results for the D-MKSOM,
ELM and P-MKSOM models, since they pre-
sented the best performances for this data set. By
analyzing these figures, one can note that the as-
sumptions of gaussianity and uncorrelatedness of
the sequence of residuals are mostly satisfied by
the three models in these data sets.

Robustness Analysis of the Proposed Mod-
els: The final set of experiments aims at evalu-
ating the degree of similarity, from a statistical
viewpoint, among the sequence of residuals gen-
erated by the P-MKSOM and D-MKSOM meth-
ods for different VQ algorithms. For this pur-
pose, we use the Kolmogorov-Smirnov test (KS-
test) (Soong, 2004). The KS-test quantifies a dis-
tance between the empirical cumulative distribu-
tion functions (CDF) of two sequences of residu-

Table 3: KS-test results on the P-MKSOM and
D-MKSOM performances.

P-MKSOM D-MKSOM
VQ KS-test VQ KS-test

Algorithms Results Algorithms Results

FCL Reject FCL Accept
FSCL Accept FSCL Accept
WTA Accept WTA Accept

K-means Accept K-means Accept

als. The null hypothesis to be tested is that the
sequences are drawn from the same distribution.

Table 3 presents the results for the P-
MKSOM and D-MKSOM models. A rejection
of the null hypothesis indicates that the CDF of
the residuals generated by the original MKSOM
model2 is different from the CDF of residuals gen-
erated by the MKSOM implemented with a dif-
ferent VQ algorithm. The acceptance of the null
hypothesis indicates that the CDF of the residu-
als generated by the original MKSOM models is
equivalent to the CDF of residuals generated by
the MKSOM models implemented with a different
VQ algorithm.

From Table 3 one can infer that, the perfor-
mance of the original P-MKSOM model is sta-
tistically equivalent to those obtained by imple-
menting the P-MKSOM with the FSCL, WTA
and K-means algorithms. In case of equivalence,
we recommend the user to choose the computa-
tionally lighter VQ algorithm to build the linear
local model of interest (the WTA algorithm, in
this case). On the other hand, the performance
of the original D-MKSOM model is statistically
equivalent to those obtained by implementing the
D-MKSOM with all algorithms. As mentioned be-
fore, in case of equivalence, we recommend the
user to choose the computationally lighter VQ al-
gorithm.

4 Conclusions

From the exposed in this paper, the main conclu-
sion is that the proposed local linear models (D-
MKSOM and P-MKSOM) consistently outper-
formed standard global models for system identifi-
cation based on MLP and ELM neural networks,
mainly the D-MKSOM model. We also verified
that the D-MKSOM model is more robust that
the P-MKSOM model to changes in the base vec-
tor quantization algorithm.
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Figure 1: Residual correlation analysis for the heat exchanger data: (a,b,c,d) D-MKSOM model, (e,f,g,h)
ELM model and (i,j,k,l) P-MKSOM model.
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