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Abstract— This paper proposes the use of Evolutionary Computing applied to the synthesis of digital circuits
in the disjunctive normal form. Due to the computational cost of the employed technique, the platform of digital
synthesis was implemented using parallel processing in order to reduce processing time. Performance reviews
were accomplished in order to prove that the digital platform implemented using MPI had considerable gain in
performance. Case study of digital synthesis was done with digital comparator circuit. It was possible to confirm
that circuits synthesized by Evolutionary Computation using multi-population have improved performance than
traditional circuit synthesis techniques.
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1 Introduction

In recent years, the application of biological con-
cepts to technology has allowed new possibilities:
the construction of devices capable of evolving, de-
fined as Darwinian machines or, more commonly
known as, Evolutionary Hardware (EHW) (De
Garis, 1993). The implementation of such de-
vices involves concepts and techniques of Evolu-
tionary Computing, Genetic Algorithms and re-
configurable electronic circuits, leading towards
the construction of autonomous, self-adaptive and
fault tolerant systems (Sekaninaa, 2011). Accord-
ing to (Zebulum et al., 2002), the main objective
of EHV is to offer an alternative methodology for
Computer Aided Design (CAD) of electronic cir-
cuits. The term Evolutionary Hardware also gen-
erally used in reference to the development of real-
time reconfigurable chips (Zhang et al., 2004).

A fundamental concept introduced by (De
Garis, 1993) states that the concepts of Evolution-
ary Hardware must fit at least in two conditions
to justify its use: (a) The evolved circuits should
be both functional and very complex for human
understanding, otherwise they could be designed
using traditional techniques; (b) The circuits must
evolve faster than the evolution of software simu-
lated circuits, otherwise it would be easier to per-
form simulations only.

The Genetic Algorithms (GA) have gained
popularity because they are very efficient. As the
search for solutions uses heuristics, the chance of
finding a global solution is high. It is also not
necessary to know exactly the behaviour of the
problem, which presents a great advantage com-

pared to deterministic methods. An evolutionary
Algorithms, such as GAs, is based in Theory of
Evolution of Species, compiled by Charles Darwin.
According to this theory, living beings undergo a
natural selection process. The species must be
able to survive and reproduce in the environment
in a determined environment. The fittest individ-
uals pass their genes to future generations.

The main objective of this work is to in-
vestigate methods for generating digital elec-
tronic circuits using the hardware evolution tech-
niques. These techniques were implemented
through simulations on a high performance par-
allel/distributed processing platform using multi-
cores and multi-population GA’s. Using a truth
table as input, the evolutionary algorithm must
encounter a circuit that all its rows match the ta-
ble and also has the smallest possible size.

2 Evolutionary Electronics

The taxonomy of Evolutionary Electronics that
refers to the use of circuit simulators or reconfig-
urable chips as platforms for the search process
can be described as extrinsic when the best so-
lution is implemented in reconfigured hardware or
intrinsic, when the EHW is reconfigured as many
times as the population size in each generation
(Yao and Higuchi, 1999).

2.1 Evolution of Digital Circuits

Digital systems can be classified into four levels
of abstraction: components level, such as transis-
tors and resistors; gates logic level; Boolean equa-



tions using, for example, conjunctive normal form
or sum of products; and architectural level using
ULA’s, multiplexers, and other memories.

The representation by Boolean functions is
widely used in this type of project since it brings a
high level of abstraction, that is interesting in the
context of Evolutionary Computation. Further-
more, this representation fits within the context of
combinational circuits, i.e., circuits which depend
only on their input voltages for a corresponding
output response.

Figure 1: Level representation of Boolean func-
tions.

Figure 1 describes a hypothetical function
translated into a ternary vector, where each gene
represents a minterm expression. It is necessary
to know the circuit’s number of literals (entries).
This representation identifies 0 as a negated lit-
eral, 1 as a literal with true value in the logic level,
and 2 as an absent literal.

3 Parallel Programming Platforms

The parallel and distributed computing seeks to
achieve high performance by optimizing the pro-
cessing capacity of available machines, exploit-
ing efficiently the parallelism in the developed al-
gorithms. There are different middlewares that
allow both parallel programming as well as dis-
tributed programming applications. These tech-
niques can be combined to better exploit the par-
allelism levels in an application according to the
available architecture. In this section we present
some characteristics of the MPI platform that was
used to obtain performance through parallelism in
this work.

3.1 Message Parsing interface (MPI)

MPI (Message Passing Interface) is a standard
widely used for data communication in paral-
lel computing. It provides a platform for writ-
ing message-passing programs with a practical,
portable and efficient methodology. It is ideal for
applications where it is necessary to obtain high
performance for both multicore processing as to
clusters of processors. According to (Pacheco,
1997) and (Quinn, 2004), MPI is widely used

to exchange of messages among tasks of parallel
applications developed for a distributed environ-
ment. With MPI is possible to make a natural and
easy separation of the problem in parts. Its main
characteristics are portability and efficiency with
a wide acceptance in the academic community and
in the industry (Karniadakis and KirbII, 2003).

4 Genetic Algorithms in Parallel
Programming

The genetic algorithm parallelism is presented in
the literature both considering single and multiple
populations. The main implementations of paral-
lel genetic algorithms as presented by (Cantu-
Paz, 1998) are described in the following subsec-
tions.

4.1 Single population master-slave global genetic
algorithm

This algorithm considers that there is a master
processor and a set of slave processors. The mas-
ter processor stores the population, performs GA’s
operations and distributes individuals to the slave
processors. The slave processors only evaluates
the fitness of individuals. The evaluation of indi-
viduals is parallelized by assigning a fraction of the
population to each of the available slave proces-
sors. The communication occurs only when each
slave receives its subset of individuals for evalua-
tion and when slaves return the fitness values to
the master processor. This type of algorithm does
not change its structure. It can either be imple-
mented in a shared or distributed memory plat-
form.

4.2 Single population fine-grained genetic algo-
rithm

This algorithm is also known as diffusion model,
cellular genetic algorithm or massively parallel ge-
netic algorithm. It can be interpreted as a global
population placed in a structure of processing ele-
ments, where the spatial distribution of individu-
als or sub-populations defines the neighbourhood.
Each node has only a few individuals (one or two)
and the number of nodes is much larger than the
number of sub-populations on the island model,
becoming more massively parallel with the poten-
tial to achieve better speed-ups. The migration
in the diffusion model is implicit, where individ-
uals are allowed to spread through the popula-
tion. This is possible because the neighbourhoods
are defined more closely around each node on any
topology. Since each node is exactly at the cen-
ter of a neighbourhood, these neighbourhoods will
overlap, so that every node is part of several neigh-
bourhoods. The selection is performed in par-
allel within these local neighbourhoods and only



the central node will be updated throughout the
neighbourhood.

4.3 Multi-populational coarse-grained genetic al-
gorithm

It is also known as regional model, multideme
model or island model. It creates islands (or
subsets of the population) that are distributed
among processors. A genetic algorithm is exe-
cuted on each processor over each island where
some exchange of information can occur among
processors. The execution is performed in asyn-
chronous manner. The communication among
sub-populations is concentrated on the migration
process. This type of algorithm improves the qual-
ity of solutions and reduces time convergence.

Sub-populations have a large number of indi-
viduals. As a consequence, the rate of migration
between sub-populations is typically smaller and
the effect of interaction among sub-populations
is lower when larger sub populations are treated.
Sub-populations can be categorized for their mi-
gration method, linkage diagram and homogeneity
of the processor node.

4.4 Hybrid genetic algorithms

These combine more than one parallel strategy.
For example, one can combine the diffusion model
with an island model, where each sub-population
is a broadcast architecture. Another possibility is
the master-slave island model.

The combination of different models of paral-
lel genetic algorithms, associated with a compu-
tational architecture, can produce good results in
terms of solution quality and computational per-
formance as accomplished by (Zhang et al., 2007),
(Berger and Barkaoui, 2004). A review of the lit-
erature involving parallel computation and evo-
lutionary algorithms is presented by (Alba and
Tomassini, 2002).

5 Synthesis of digital circuits

In this section, the proposed methodology em-
ployed for the evolutionary synthesis of digital cir-
cuits at the functional level is explained in detail.

5.1 Methodology Representation in Digital Elec-
tronic

One of the factors that most influences the perfor-
mance of an evolutionary algorithm is the adopted
representation for genes and individuals since
these structures encode probable solutions. This
paper investigates the function’s application level
in the disjunctive normal form, also known as sum
of products.

5.1.1 Function’s representation level

Among the logical representations, the Boolean
functions corresponds to the highest level of ab-
straction among chromosome and the circuit itself,
since the circuit can be represented by an alge-
braic Boolean expression where the output can be
either 1 or 0. In the case of a combinational func-
tion of N inputs, each gene must have N internal
variables (or literals) and each of these variables
can assume three possible values:

0 - indicates that the entry in this variable
must be denied;

1 - indicates that the entry in this variable
should not be denied;

2 - indicates that the entry in this variable is
absent, therefore disregarded from the expression.

In the disjunctive normal form presented in
this work, disjunctions from conjunctions of lit-
erals occur. The disjunction is equivalent to an
OR gate and the conjunction is equivalent to an
AND Gate. An example of a Boolean function
in disjunctive normal form with its corresponding
equivalent digital circuit is presented in Figure 2.

Figure 2: Boolean expression and corresponding
digital circuit

5.1.2 Genes

The data structure representation of digital cir-
cuits should facilitate genotype-phenotype map-
ping. Throughout the use of the ternary represen-
tation previously described and modelled in the
disjunctive normal form, each gene must map a
literal conjunction, i.e., each literal represented in
a gene receives an input value (e.g. a truth table).
Depending on its state (0, 1 or 2), its value will
be altered and an additional AND operation will
occur with the other literals of this gene (Figure
1).

The above described gene mapping structure
is known in the literature as minterm and has this
designation only in the sum of products represen-
tation.



5.1.3 Individuals

An individual in the functional representation
must be capable of decoding its chromosome to
a complete Boolean expression that can be a pos-
sible solution of the input truth table. This chro-
mosome, or genes vector, does the mapping of dis-
junctions among minterms, that results in a bi-
nary number that may be equal to truth table’s
output. The quality of an individual in this prob-
lem depends directly to the number of hits that
it presents for a determined input truth table.
This quality is also dependent to the number of
minterms on its chromosome. In this work, when
a solution’s fitness is the closets to zero, it is con-
sidered the best solution within a population, i.e.,
the evolution occurs only when there is a mini-
mization of an individual’s fitness.

The fitness function proposed in this paper is
represented by Equation 1 for integer values.

Fitness = s + (p · e) (1)

where, e is the error for an individual, s is the
chromosome size and p is the penalties applied to
errors of individuals.

In order to make the fitness calculation eas-
ier, the size of a chromosome always has weight
1. Penalties are also applied to errors that in-
dividuals present in the rows of truth table. It
can be noticed that in the minimization process
of a Boolean circuit given a determined truth ta-
ble, errors can not be tolerated in the evolutionary
process.

5.1.4 Hierarchically structured popula-
tiony

The structured population in hierarchy used in
this paper is a structure data array tree, where
each node is an individual. The root node of a sub-
tree is always a better solution than the branched
nodes, and this is known as a leader node and
individuals in the branches are known as follow-
ers. Figure 3, adapted from (Toledo et al., 2010),
represents a population in ternary tree.

Figure 3: Population in ternary tree.

5.1.5 Multi-population Genetic Algo-
rithm

The operation of the multi-population genetic al-
gorithm used in this study follows the methodol-
ogy described by (Toledo et al., 2009).

In this methodology, if an individual’s fittess
is better than one of its parents, it will replace the
parent with the worst fitness that participated in
the crossing process.

The operations of selection, recombination
and mutation are repeatedly performed in a loop
defined by a parameter nc, obtained by Eq. 2.

nc = ps · cr (2)

where nc is the number of crossovers, indicating
the number of generated individuals, ps is the size
of the population concerned and cr is the crossover
rate, which is a recombination rate calculated for
this population.

In this work, each population is structured in
a ternary tree with 13 individuals. The adopted
recombination rate value was 10, consequently 130
individuals are generated.

The processes described above repeats until a
specified population has converged. This occurs
when no new individuals are inserted in the pop-
ulation, as a consequence the next population will
be processed.

The last phase of the algorithm consists of a
migration procedure. In this process the best indi-
viduals are migrated to ring-shaped adjacent pop-
ulation, as exemplified by the arrows of Figure 4,
where the migration among populations organized
in three ternary trees can be observed.

Figure 4: Example of migration among three pop-
ulations.

The stopping criterion for the the multi-
population genetic algorithm is defined by a time
execution limit.

5.1.6 Crossover and Mutation

The problem concerning crossover of chromosomes
with different sizes is to establish a criteria in
relation to a new individual’s chromosome size.
This work, adopted a procedure known as uniform
crossover, its criterion for the child’s chromosome
size is a random number between the smaller and
the larger size for both parent’s chromosome size.

In this algorithm, neither the crossover gener-
ated individuals rate or mutation generated indi-
viduals rate were used. Thus, every individual is
generated by crossover and it may pass through-
out the mutation operator. What defines this is a
parameter called probability of mutation.

If the individual is selected for mutation, a
routine initiates for each one of the individual’s
gene. Each gene will have a probability equal to
50% of passing throughout only one of the three
types of mutation:



(a) - Removes the current gene;

(b) - Adds a random gene to a chromosome
end;

(c) - Alters the value of only one literal chosen
randomly within the minterm (gene), the current
value of this literal will be replaced by a random
value.

6 Results

In this section, the results of the synthesis of a
eight input comparator circuit generated from a
truth table of 256 rows using the proposed method
are presented. For the tests a computer with
Intel R© CoreTM 2 Duo E8400 @ 3GHz, with 4GB
of RAM was utilized.

This subsection was inspired by the work of
(Zebulum et al., 2002), in order to compare the
results with previous works.

The 8 digital inputs comparator used in this
work is a circuit represented by A > B. The truth
table of this comparator has 256 lines where 120
outputs are in logical level 1 (true). This problem
involving truth table rows with output 1 can only
be represented by a Boolean expression, with the
objective of obtaining a circuit with 120 minterms,
that works in the same way as 8-bit comparator.
In the other hand, this digital circuit is quite com-
plex, since its implementation requires many logic-
gates. In this case, a Boolean minimization soft-
ware such as Espresso (truth table minimization
software with low computational time) is required
for comparison purposes. Table 1 shows the cir-
cuit generated by the Espresso software with only
15 minterms.

Table 1: Truth table minimized by Espresso.
Minterm A3 A2 A1 A0 B3 B2 B1 B0

M0 2 2 2 1 0 0 0 0
M1 1 2 2 1 2 0 0 0
M2 2 1 2 1 0 2 0 0
M3 1 1 2 1 2 2 0 0
M4 2 2 1 1 0 0 2 0
M5 1 2 1 1 2 0 2 0
M6 2 1 1 1 0 2 2 0
M7 1 1 1 1 2 2 2 0
M8 2 2 1 2 0 0 0 2
M9 1 2 1 2 2 0 0 2
M10 2 1 1 2 0 2 0 2
M11 1 1 1 2 2 2 0 2
M12 2 1 2 2 0 0 2 2
M13 1 1 2 2 2 0 2 2
M14 1 2 2 2 0 2 2 2

In (Zebulum et al., 2002) as well as is in this
work, 100% of the executions encountered a cir-
cuit with 15 minterms. In the case of (Zebulum
et al., 2002), the OLG (Oscillating Length Geno-
types) methodology was utilized. This allows the
variation of chromosomes size in a oscillatory man-
ner, in the same way as adopted in this work.
As this digital circuit has 8 inputs, where each

entry can have three different values, it is possi-
ble to have a domain of 6, 561

(
38
)

different genes
(minterms). According to (Zebulum et al., 2002),
the union of 15 genes in this domain has a com-
putational complexity of O(15) = 1045. It is al-
most impossible to know for sure how many cir-
cuits with 15 minterms can match this eight bit
comparator. In order to synthesize a circuit with
15 minterms that meets the truth table in 100% of
the executions, the evolution parameters of Table
2 were used.

Table 2: Parameters of evolution.
Parameter Value Observation

Number of populations 4 look subsection 5.1.5
Population structure ternary tree look subsection 5.1.4

Individuals per population 13
Crossover type uniform look subsection 5.1.6
Crossover rate 10.0 look Equation 2

Probability of mutation 55%, 70%, 85% e 100% look subsection 5.1.6
Migration type ring look Figure 4

Penalty for error 5 look Equation 1
Stopping criterion maximum time of 1200 sec. look subsection 5.1.5

The executed experiment carried a total of 20
runs with 100% accuracy, that is, in all executions
the genetic algorithm encountered a solution with
15 minterms that fully matches the the logic cir-
cuit. It is worth noting that a GA is a heuristic
method in which each run can generate a different
solution. For instance, it was possible to prove
that there are several circuits with 15 minterms
that are able to replicate the logic behaviour of
the 8 bit comparator since non of synthesized cir-
cuits were equal.

Table 3: Results of the experiments.
Parameter Value
Executions 20
Accuracy 100% (all with 15 minterms)

Average time synthesis 99 seconds
Minimal time synthesis 13 seconds

Maximum time synthesis 765 seconds

As the differences among the 20 synthesized
circuits do not interfere in the circuit’s accuracy,
and due to the fact that sometimes these differ-
ences are minimal, only one circuit is presented in
Table 4, where it was synthesized by the platform
in just 13 seconds. The last column shows which
position the minterm has an identical reproduc-
tion generated by the Espresso software described
in Table 1.

The system built for the synthesis of digital
circuits using Evolutionary Computation proved
to be an applicable tool in the design of combi-
national circuits, where the input is given in the
form of a truth table. The main difficulty in this
type of application is to empirically determine the
correct parameters for the evolutionary algorithm,
in order to encounter a satisfactory solution in ac-
ceptable time.



Table 4: Synthesized Circuit by genetic algorithm.
Minterm A3 A2 A1 A0 B3 B2 B1 B0 Table 1

M0 2 1 2 2 0 0 2 2 M12
M1 1 2 2 2 0 2 2 2 M14
M2 1 1 2 2 2 0 2 2 M13
M3 2 0 1 2 0 0 0 2 no
M4 1 1 1 2 1 2 0 2 no
M5 1 0 2 1 1 0 0 0 no
M6 1 0 1 1 1 0 1 0 no
M7 0 2 1 1 0 0 2 0 no
M8 0 1 0 1 0 1 0 0 no
M9 0 1 1 1 0 1 1 0 no
M10 1 1 1 1 1 1 1 0 no
M11 1 2 1 2 2 0 0 2 M9
M12 1 1 0 1 1 1 0 0 no
M13 2 1 1 2 0 1 0 2 no
M14 2 0 0 1 0 0 0 0 no

7 Conclusion

In this paper a methodology for synthesis of dig-
ital electronic circuits in disjunctive normal form
was presented using a multi-population genetic al-
gorithm. For this type of application an input
truth table must be used and it is also necessary
to set starting parameters for the evolutive plat-
form. As a case study, a digital comparator circuit
with 8 inputs was synthesized. The results were
compared with the work of (Zebulum et al., 2002)
and also with the Boolean minimization software
Espresso. The results showed that all the execu-
tions generated a satisfactory circuit and that, on
average, this processing lasted 99 seconds, which
is reasonable taking into account the complexity
of the input problem and its solution space.

The results presented in this paper demon-
strate the feasibility of the synthesis of combina-
tional digital circuits on Evolutionary Computa-
tion, but with the exponential growth of the prob-
lem it may require other techniques to be gathered
to the methodology for the synthesis of larger dig-
ital circuits.

For the continuation of this work, we propose
the development of following targets:

• Initialization operator for the populations
thorough the inspection the truth table in or-
der to restrict the search domain;

• Genetic operators that detects small chromo-
somes parts that characterize exceptional be-
haviour of individuals, creating gradients that
would optimize the evolution process.
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