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Abstract This paper presents a parameter modeling to Adaptive Power System Stabilizers using multi layer perceptron and 
radial basis function neural networks architecture. The application of neural networks in power system stabilizers aims to 

improve the dynamic stability of electric power systems by reducing the machine eletromechanic damping oscillation when a 

disturbance occurs. According to the current plant operating conditions, the PSS parameters are automatically adjusted by the 

neural network in sense to give a satisfactory control. The observed performance for the proposed approach is tested in 

simulations, using a nonlinear dynamic model of infinite bus machine type. The results show that it is possible to improve the 

power system dynamic performance with the new modeling. 
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1    Introduction 

The power plants use synchronous generators whose 

electromechanical oscillations of low frequency, 

when badly damped, they are harmful to the 

electrical system, because that they can cause the loss 

of synchronism of the generators. The use of Power 

System Stabilizers (PSS) for the improvement of the 

dynamic stability of the power systems has received 

bigger attention in the last years [1]. 

The adjustments of the parameters used in these 

controllers are determined through a linear model of 

the system around a nominal operation point. 

However, the performance of the conventional PSS 

degrades when a change in its operation point occurs 

[2]. 

Some techniques such as adapted control have 

been proposals as solution of the problem [5], [6]. 

However, the most of adapted controls is based on 

parameters identification on the system model in real 

time, but it consumes much time. Robust control 

techniques, fuzzy logic and PSS design based on 

Lyapunov also are other alternatives to treat the 

problem [7], [8], [9] [10], [11], [12],[13]. However, 

their responses are slow and real time applications 

are limited. 

In this paper two modeling forms for PSS’s 

parameters using neural networks are proposals: 

Multilayer Perceptron (MLP) and Radial Basis 

Function (RBF). The use of a neural network for 

parameters adjustment becomes possible the practical 

implementation of the method and the parameters 

adequacy for different operation points.  The neural 

network advantage it is in the diverse of operations 

points since it operates with inexact data and not total 

defined situations. 

2   System’s Description 

In the Brazilian Interconnected System, the demand 

for energy generation next to the consumption place 

comes growing stimulated by the public and 

governmental pressure for the energy matrix 

diversification, currently centered in the hydraulic 

generation. The incentive for new electric energy 

generation sources contributed to increase the use of 

the natural gas. The thermoelectric plants are benefit 

by the combined cycle technology that better use the 

natural gas advantage and consequently to increase 

the income of them. 

A combined cycle thermoelectric plant has 

associates to the same plant gas turbines and steam 

turbine generating electric energy. The 

thermoelectric in study possess an installed power of 

310,7MW, being composed for: (i) two gas turbines, 

each one with nominal power of 112,8MW, (ii) one 

steam turbine with nominal  power of 113,1MW, (iii) 

two boilers of heat recovery, (IV) two generators of 

133,8MVA and (v) a generator with nominal power 

of 147MVA.  

The process is initiated with atmospheric air 

being sucked for the combustion turbines 

compressors. Air is tablet, mixed with the natural 

gas, and after that this mixture is burnt. This process 

originates gases with high temperatures and 

pressures that are sent for the responsible turbine for 

converting the thermal energy into mechanics. The 

connected electric generator to the turbine’s axle 
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converts the energy mechanics into electric. The 

process, until this stage, is characterized as simple 

cycle energy generation.  

After the expansion of the gases, they are sent 

for the recovery boilers, where it will take advantage 

the heat of the hot gases proceeding from the gas 

turbines to generate the vapor that will put into 

motion the steam turbine. When leaving the turbine, 

the steam is condensed and returns for the recovery 

boilers, closing the cycle. This turbine converts the 

stored energy into the steam in high pressure and 

temperature in rotation energy, which is transformed 

into electric energy for the generator. Figure 1 

represents the machine of simplified form. The 

voltage regulator controls the generator’s excitation 

system so that the generated voltage and the reactive 

power vary the desired one in accordance with. The 

purpose of the Stabilizer is to use the generator’s 

excitation system better to regulate the power 

oscillations, increasing the generator’s stability and 

improving the transmission system as a whole [2]. 

The PSS operates by generator´s regulator of voltage, 

influencing its adjustment point.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Machine’s representation in block diagrams. 

3  Conventional Modeling of Parameters  

The stabilizer’s parameters are adjusted making use 

of the linear model of 3
rd

 order found in literature and 

shown in Figure 2. The model is based on a machine 

connected on an infinite bus through equivalent 

impedance around a fixed point of operation [1]. 

Through this conventional model the parameters for 

diverse operation points are gotten, that will form a 

nonlinear set to be used as base for training of the 

neural networks in the boarding proposal in this 

work. 

The model’s equations are express in function of 

the constants K1 to K6. The Equation (1) represents 

the electric torque variation, ∆TE, for a variation ∆δ 

in the rotor’s angle, with flow concatenated in the 

direct constant axle, e’q. 
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The Equation (2) express the electric torque 

variation ∆TE for a variation of the flow concatenated 

in the direct axle ∆e’q, with angle of the constant 

rotor δ. 
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The following term, in (3), represents the 

impedance factor. 
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The constants K4, K5 and K6 represent 

respectively: the demagnetized effect of a rotor angle 

variation ∆δ, with constant voltage field EFD; the 

terminal voltage variation ∆VT for a rotor angle 

variation, with flow concatenated in the direct 

constant axle eq´ and the terminal voltage variation 

with the variation of eq´, for constant rotor angle. 
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where: 

V  = infinite bus voltage. 

0xV = voltage that defines the axle position and that 

it supplies the torque angle initial value. 

0  = initial torque angle.  

dx = direct axle reactance. 
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'

dx  = direct axle transitory reactance.  

qx = quadrature axle reactance.  

'

qx = quadrature axle transitory reactance.  

ex = circuit’s proper reactance of the rotor’s iron.  

 = admittance angle series equivalent less the 

torque angle.  

0qI = current component in the quadrature axle.  

0qV = terminal voltage’s component of the generator 

in the quadrature axle in the machine’s reference.  

0dV = terminal voltage’s component of the generator 

in the direct axle at machine’s reference.  

0tV = generator’s terminal voltage in permanent 

regimen (absolute value).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Machine infinite bus blocks diagram. 

4   Power System Stabilizer 

A Power Systems Stabilizer (PSS) is an element, or 

group of elements, that supplies an additional input 

to the regulator to improve the power systems 

dynamic performance. The main function of the 

conditional signal to the PSS’s net is to compensate 

the system’s delay to be controlled [9].  

The phase compensation is realized through by 

the use of functions lead-lag that supplies phase 

advance on the scale of interest frequency. The 

diagram of Figure 3 represents the stabilizer. The 

first block represents gain K, the second block is a 

filter washout to eliminate errors in the input signal, 

and the third block is a circuit lead-lag with time 

constants T1 and T2. 

 

 

 

 

 

 

 

 

 

Figure 3: PSS’s blocks Diagram.  

Table 1 represents the data that will be used as 

base for neural network’s training. The inputs 

mention the active power (P) and reactive power (Q) 

and the outputs are the PSS’s parameters. The 

attainment of these data was gave through the 

stabilizer’s conventional model, as shown in Figure 

3. 

Table 1: Data of entrance of the neural nets 

Inputs Outputs 

P Q T1 T2 

10 -17.5 1.2290 0.0132 

20 -18.2 1.1354 0.0139 

30 -18.8 1.0980 0.0148 

40 -19.2 0.6139 0.0264 

50 -19.6 0.4691 0.0346 

60 -19.8 0.3834 0.0425 

70 -20 0.3398 0.0478 

80 -20 0.3063 0.0530 

90 -19.9 0.2861 0.0567 

100 -19.7 0.2686 0.0604 

 

5   Modeling by Neural Networks 

Two algorithms had been implemented, Neural 

Network RBF, that is composed for an hidden layer 

and a output layer, and the Neural Net MLP, that 

possess two hidden layers.  

The disadvantage of use a stabilizer’s 

conventional model are in the fact of the parameters 

adjustment to be limited to only one operation point, 

with just established frequency, what it can become 

an inefficient damping out of this point. 

The RBF implementation is composed for a 

hidden and output layer. Differently of the MLP, 

where each neuron defines a separation plan [3], the 

RBF defines one circle in the input space through a 

Gaussian function. 
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Another difference between these nets is the fact 

of the MLP to use internal products, while the RBF 

uses distances. In the developed net, with each input 

data has been associated a specific center. In hidden 

neuron activation it is determined by a nonlinear 

function of the distance between the input vector and 

a reference vector. 

The RBF has a simple architecture, consisting 

two layers of weights (WE and WS), where the first 

one contains the radial bases functions parameters 

and the second form linear combinations of the 

function’s radial base activations to generate the 

output [4]. 

 It is trained in two periods, with the functions of 

radial base being determined first for not-supervised 

techniques, using for input data and the second layer 

(weights), being later determined for supervised 

linear methods (linear function), of fast convergence.  

The analyzed neural networks are composed for 

the inputs and outputs in accordance with Table 1. 

The neural network parameter adjustment is shown 

in Figure 4. 

 

Figure 4: System’s blocks diagram with neural network’s 

inclusion. 

 

The of neural network’s interpolation capacity is 

a useful characteristic to the treated problem, once 

that the table use to store the parameters values T1 

and T2 in different points operation would be 

extensive due to infinity of points situated between 

two points. 

This neural networks ability has become them 

useful for the modeling of nonlinear systems. Since 

the set of operations points found in Table 1 is 

nonlinear.  

The neural networks most significant 

characteristic is the ability to approach any continues 

nonlinear function of a desired correction degree. 

 6   Results and Discussion 

The machine’s mathematical model and the 

controllers was incorporated to the program 

Transitory Analysis Electromechanical (ANATEM), 

in which simulations had been carried through that 

had served for the database composition used in the 

training and neural networks validation .  

Neural networks MLP and RBF had been 

projected for convergence with maximum error of 

0.00001. The MLP presented convergence in 10 

iterations and the RBF in 8 iterations. The data 

gotten for the nets are in Table 2. 

 
Table 2: Neural network’s validation data 

INPUT OUTPUT MLP OUTPUT RBF 

P Q T1 T2 T1 T2 

55 -19.7 0.4250 0.0377 0.4142 0.0400 

95 -19.8 0.2790 0.0579 0.2761 0.0588 

110 -19.4 0.2515 0.0584 0.2671 0.0607 

 

It was applied a step of 2% in the load and 

simulated the system in three situations was applied 

Figure 5: (i) without the stabilizer, (ii) using the 

stabilizer adjusted in field and (iii) using the 

stabilizer with projected parameters.  

As it can be verified by the curves, the system 

without the stabilizer is very oscillatory, what it can 

take the loss of machine’s synchronism. With the 

PSS it can be observed the advantage in to use the 

parameters adjustment using neural networks for the 

biggest damping, in detriment of the parameters 

gotten through the conventional model. 

 

 
Figure 5: Comparison between field values and calculated for 

100% of load. 
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Figures 6 and 7 show the tuning influence for 

two operation points. As the calculated fixed 

parameter for nominal power it moves away from the 

same one, the parameters tuning for the neural 

networks becomes more important. 

 

 

Figure 6: Comparison between neural network tuning and 

calculated fixed parameters for 100% of load applied in 90%. 

 

 

 

Figure 7: Comparison between neural network tuning and 

calculated fixed parameters for 100% of load applied in 50%. 

 

 

Figures 8, 9 and 10 use the tuning of Table 2 in 

the MLP and RBF validation propose, because the 

points are out of the set of training and show the 

capacity of the nets in interpolating and surpassing 

given. 

 

 
Figure 8: Comparison between MLP and RBF tuning and 

calculated fixed parameters for 100% of load applied in 55%. 

 

 

 

Figure 9: Comparison between neural networks tuning MLP and 

RBF and calculated fixed parameters for 100% of load applied in 

95%. 
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Figure 10: Comparison between MLP and RBF tuning and system 

without ESP applied in 110%. 

7   Conclusion 

The solutions had presented satisfactory resulted. 

However, the carried through tests had shown that 

the RBF application converged more quickly than the 

carried through with the MLP.   

The Gaussians tuning centers to each input of 

the set training became the system convergence 

fastest. With only 8 iterations for the adjustments the 

attainment of a sufficiently necessary approach was 

possible.  

The main advantage observed with the use of 

neural networks in the parameters’ modeling of the 

PSS was the capable controllers’ attainment of 

automatically adapt the different operation points, 

what it developed the oscillations’ damping. 

The simulations had proven that the damping of 

the adjusted machine for fixed parameters it spoils as 

soon as operation condition moves away from the 

established operation point.  

In comparison, the neural networks had 

presented good data extrapolation, therefore 

excellent values for the parameters had been found 

when a load of 110% to the system was applied. 
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