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Abstract— We propose a health monitoring mechanism based on fuzzy logics in order to mitigate the number
of dead UAVs due to the lack of energy in Swarm of UAVs coordinated by a Particle Swarm Optimization
(PSO) based algorithm. The proposed mechanism depends on the energy level of the UAV, the distance to
the neighbor and energy level of the neighbor. We also propose a metrics named Death by lack of Energy
(DE) which measures the percentage of dead UAVs due to the lack of energy in the swarm of UAVs during the
mission. We analyzed the influence of the proposed mechanism in a PSO-based model designed to automatically
coordinate a swarm of UAVs in order to avoid collisions, to track multiple targets and to perform environmental
patrolling. We performed simulations varying the size of environment, the number of UAVs within the swarm and
the fuzzy membership rules. We observed that the proposed fuzzy-based mechanism can mitigate DE without
compromising the other swarm capabilities.

1 Introduction

The interest in Unmanned Aerial Vehicles (UAVs)
has grown in the last years. UAVs have been ap-
plied to perform complex and sophisticated tasks,
such as for agricultural applications and surveil-
lance (Varela et al., 2011)

Swarm intelligence have appeared in the
1990’s inspired by swarms of simple creatures,
such as ants, bees, birds, fireflies and fish (Bastos-
Filho et al., 2008)(Kennedy and Eberhart, 1995).
In the swarm intelligence algorithms, the reac-
tive agents are quite simple, but the emergent
behavior of the entire swarm can tackle complex
problems. One of the most used swarm intelli-
gence algorithms is the Particle Swarm Optimiza-
tion (PSO), proposed by Kennedy and Eberhart
in 1995 (Kennedy and Eberhart, 1995). The coor-
dination tasks are mainly been tackled by means
of multi-agent system (MAS) which is a top-down
approach. In general, the MAS approach uses cog-
nitive and rational agents with particular men-
tal attitudes, for instance belief-desire-intention
(BDI) agents. nevertheless, Swarm intelligence al-
gorithms have been successfully applied for con-
trol and/or to coordinate mobile robots (Silva
et al., 2012)(Wang et al., 2011) and is often re-
ferred as swarm robotics. The preliminary results
of these approaches suggest that coordination of
multiple robots does not necessarily need to be
performed by means of MAS.

The concept of fuzzy logics was introduced by
Lotfi Zadeh in 1965 (Zadeh, 1965). Besides, fuzzy
logics have been applied to implement controllers
for UAVs (Yeh et al., 2011). Recently, Silva et
al. (Silva et al., 2012) proposed a coordination
model for UAVs based on the PSO algorithm. Al-
though the authors demonstrated that the coordi-
nation model can self-organize the swarm aiming

at maintaining the communication and avoiding
collisions, there is a need to establish a mech-
anism to define when the UAVs must return to
the base for recharging purposes. This paper pro-
poses a health monitoring mechanism for a swarm
of UAVs managed by a PSO-based algorithm in
which fuzzy logics is applied to mitigate the prob-
ability of death of the UAVs due to the lack of
energy. The mechanism also defines dynamically
which UAVs have the priority for the recharge pro-
cess.

The remainder of the paper is organized as
follows. Section II presents some related works.
Section III describes the PSO-based coordination
model for the swarm of UAVs. Section IV intro-
duces our contribution regarding the application
of fuzzy logics for the health monitoring mech-
anism. In Sections V and VI we present some
results and the conclusions, respectively.

2 Related works

Some previous works proposed to tackle coordi-
nation issues in swarm robots by means of dis-
tributed models. In 2011, Wang et al. (Wang
et al., 2011) used the PSO algorithm to coor-
dinate multiple robots aiming to perform ter-
ritorial exploration in a collaborative manner.
Varela et al. (Varela et al., 2011) used the PSO
to coordinate multiple UAVs equipped with sen-
sors aiming to find pollutants in the atmosphere.
Other works (Shaw and Mohseni, 2011) tackled
UAVs coordination issues, but they considered a
global positioning systems (GPS). Nascimento et
al. (do Nascimento et al., 2012) proposed a proto-
type model for UAV designed for swarm of robots
applications. Zhu et al. (Zhu et al., 2011) de-
veloped a multiple robots search algorithm inde-



pendent of GPS signals to overcome this limita-
tion. Qu and Zhang (Qu and Zhang, 2011) pro-
posed a fault-tolerant collaborative algorithm to
address GPS signal losses. Shames et al. (Shames
et al., 2011) proposed a self-localization mech-
anism for mobile agents in a cooperative man-
ner. Other recent works that deal with swarm
energy consumption and sensors signal error were
recently proposed (Kim and Seo, 2012).

In 2012, Pinheiro Silva and Bastos-Filho
(Silva et al., 2012) proposed a distributed coor-
dination model for swarms of UAVs with local
ad hoc communication based on the PSO algo-
rithm. In their model, the swarm robots present
the following objectives: (i) allow the locomo-
tion through an environment; (ii) avoid obstacles
and collisions; (iii) patrol the entire environment;
and (iv) detect and track targets. They analyzed
some communication issues and assessed the en-
ergy consumption (Silva et al., 2012).

In 2013, Monteiro, Silva and Bastos-
Filho (Monteiro et al., 2013) proposed three spe-
cific scenarios in order to allow one to analyze
the performance of swarm-intelligence based co-
ordination models for swarm of robots: (i) con-
traction and expansion; (ii) self-segregation and
self-aggregation; and (iii) the capacity to change
abruptly the fly direction whenever it is necessary.
However, although the energy of the swarm coor-
dination model was assessed, the authors did not
consider the need for recharging since they were
not treating long-duration missions. In 2011, Arif
(Faisul Arif et al., 2011) proposed a decentralized
controller system inspired by artificial bees in or-
der to manage the energy in mobile robotics. In
2012, Nigam et al. (Nigam et al., 2012) devised a
health monitoring policy based on the crisp infor-
mation in their decision making mechanism and
evaluated it in a swarm of UAVs.

Although many previous works considered en-
ergy issues (Kernbach and Kernbach, 2011), to
the best of our knowledge, none of them consid-
ered the coordination of multiples UAVs with a
distributed control using an ad hoc communica-
tion network aiming to track mobile targets, while
avoiding obstacles, performing energy health mon-
itoring and performing recharging processes.

3 PSO-Based Coordination Model for

swarms of UAVs

The previous PSO-based coordination model pro-
posed in (Silva et al., 2012) presents the following
features: (i) locomotion mechanism, in which the
UAVs obtain their localization within the environ-
ment, ~xuav(t). This information can be acquired
by a GPS; (ii) perception mechanism, whereupon
each UAV has a perception sensor in order to de-
tect targets; (iii) anti-collision mechanism, where-
upon each UAV has an anti-collision sensor to

avoid obstacles and to ensure a safety locomo-
tion; (iv) and communication mechanism, where-
upon every UAV owns a wireless communication
device and acts as a routing bridge in to build a
2-connected ad hoc communication network.

The locomotion mechanism is guided by phys-
ical dynamical variables and parameters, such as
horizontal acceleration (~a), maximum horizontal
acceleration (amax), horizontal speed (~v), and
maximum horizontal speed (v). The ~a vector is
composed by other vectors: synchronism (~asyn);
avoiding collisions (~acol); avoiding losing commu-
nication (~acom); cognitive (~acog); and social (~asoc).

The Synchronism vector is given by:

~asyn = ~acol + ~acom, (1)

in which ~acol and ~acom are calculated by using
the information provided by the collision and the
communication sensors, respectively.

The Cognitive (related to the UAV) and So-
cial (related to the UAV neighbors) vectors com-
pose the swarm vector, which is given by:

~aswm = ~acog + ~asoc, (2)

where ~acog and ~asoc are calculated by the PSO
algorithm at each iteration. Since the PSO al-
gorithm needs a fitness function, we adopted the
euclidean distance to the detected target as the
quality metric for the PSO, which is given by:

fitnessuav(t) = |~xtar(t)− ~xuav(t)| , (3)

in which the information about target position,
~xtar(t), is provided by the perception sensor.

The resultant acceleration is the sum of the
Synchronism and the Swarm vectors. Finally, the
new UAV resultant velocity is calculated by:

~v(t+ 1) = ~v(t) · ω + ~a(t+ 1), (4)

in which ~v(t + 1) is the new speed, ~v(t) is the
current speed and ω is the inertia factor.

The total power consumption is the sum of
all engine power consumption and communica-
tion sensor power consumption. In the case of
a quadrotor, 4 (four) engines are used. Equation
(5) presents the power consumption model:

Puav(t) = 4 · Puav−eng(t) + Pcom , (5)

where Puav−eng(t) is the engine power consump-
tion at time t and Pcom is the communication sen-
sor power consumption.

In this paper, we will assume that Puav−eng(t)
is determined by Equation (6):

Puav−eng = 12, 4 · |~vuav(t)|+ 11 , (6)

where ~vuav(t) is the speed of UAV in m/s at time
t. Pcom is determined by Equation (7):

Pcom = 0.66 · 103 · rcom + 214.5 · 10−3 , (7)

where rcom is the communication sensor range in
m.



4 Fuzzy Health monitoring mechanism

This section specify the health monitoring mech-
anism in details. This mechanism is responsible
for monitoring the energy of the UAVs and deter-
mine when each UAV must leave the current tasks
in order to recharge.

Basically, the health monitoring mechanism
was modeled by using the following parameters:

1. Energy capacity (Wuav−cap): The maximum
amount of energy that an UAV can have.
This value is the average value of a gaussian
distribution that is used to determine the en-
ergy capacity of each UAV;

2. Energy capacity standard deviation
(Wuav−cap−std): it is related to the standard
deviation of the gaussian distribution to
define the energy capacity of each UAV;

3. Recharging area radius (rbase): Determines
the recharging area;

4. Recharging power rate (Puav−rch): Defines
the amount of energy an UAV can be
recharged at each iteration when it is in the
recharge base.

Since the UAVs have a limited energy ca-
pacity (Wuav−cap), they will possibly need to
recharge their battery during their operations.
Ideally, when an UAV realizes that it needs to be
recharged, this UAV should move to the recharg-
ing area which is localized in a rbase meters radius
around the known base station position (~xbase).
In our simulation setup, (~xbase) is in the center
position of the environment. As soon the UAV
reaches the recharging area, |~xuav(t) − ~xbase| <
rbase, the UAV starts the recharge process with a
Puav−rch recharging power rate. When the cur-
rent energy (Wuav−crt(t)) reaches the energy ca-
pacity (Wuav−cap), the UAV battery is considered
recharged and the UAV can return to the mission.

The current energy is initialized at the begin-
ning, Wcrt(0) = Wuav−cap. At each iteration, the
energy is consumed according to Equation (8):

Wcrt(t+ 1) = Wuav−crt(t)− Puav(t) , (8)

where Puav(t) is specified in Section 3.
We propose a health monitoring mechanism

that uses fuzzy logics. Each UAV has informa-
tion regarding the base position (~xbase) and the
environment bounds (xlim). The distance level at
time t measures the distance from the base and is
determined by Equation (9):

Dlvl(t) =
|~xbase − ~xuav(t)|

xlim

. (9)

The energy level at time tmeasures the energy
level regarding the energy capacity and is deter-

mined by Equation (10):

Wlvl(t) =
Wuav−crt(t)

Wlvl

. (10)

This value ranges in the interval [0,1].
We created three input fuzzy variables: En-

ergy Level (EL), Distance Level (DL) and Neigh-
bor Energy Level (NEL). These variables will
map the energy of the UAV Wlvl(t), the distance
of the UAV to the recharge base Dlvl(t) and the
energy of the closest neighbor Wlvl(t), to member-
ship degrees related to the fuzzy sets.

The fuzzy variables EL and NEL are repre-
sented by three fuzzy sets: Critical, Hungry and
Satisfied; whereas the fuzzy variable DL is rep-
resented by three fuzzy sets: Close, Middle and
Far. The membership functions of EL and DL
variables are depicted in Fig.1. The membership
functions for NEL is similar to the one for EL.
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Figure 1: The upper chart presents the member-
ship functions of the three fuzzy sets related to the
fuzzy variable Energy Level (EL): Critical, Hun-
gry and Satisfied; and the bottom chart presents
the membership functions of the three fuzzy sets
related to the fuzzy variable Distance Level (DL):
Close, Middle and Far.

One can observe from Fig. 1 that the fuzzy
sets Critical, Hungry and Satisfied are represented
by the following mathematical functions, respec-
tively: left triangular function with first threshold
(Criticalx−1) equals 0.25 and sencond threshold
(Criticalx−2) equals 0.50; a triangular function
and with first threshold (Hungryx−1) equals 0.25
and second threshold (Hungryx−2) equals 0.75;
and a right triangular function with first threshold
(Satisfiedx−1) equals 0.50 and second threshold
(Satisfiedx−2) equals 0.75.

In the same way, the fuzzy sets Close, Middle
and Far are represented by the following math-
ematical functions, respectively: left triangular
function with first threshold (ClosWx−1) equals



0.25 and sencond threshold (ClosWx−2) equals
0.50; a triangular function and with first threshold
(MiddlWx−1) equals 0.25 and second threshold
(MiddlWx−2) equals 0.75; and a right triangular
function with first threshold (Farx−1) equals 0.50
and second threshold (Farx−2) equals 0.75. It is
important to note that the output variable is the
decision regarding to the following two fuzzy sets:
recharge or not recharge.

The decision making is composed by the fol-
lowing three fuzzy rules:

Rule 1: IF EL is Critical THEN Recharge;

Rule 2: IF EL is Hungry AND DL is Far THEN
Recharge;

Rule 3: IF EL is Hungry AND NEL is Satisfied
THEN Recharge.

At each iteration, the health monitoring
mechanism obtain the crisp values for the three
values, transform then into membership degrees
related to fuzzy sets, check the three aforemen-
tioned fuzzy rules and decide whether the UAV
must recharge or not. If the Recharge member-
ship degree is greater than 0.5, then the recharge
decision is more representative.

It is important to note that in crisp set, the
UAV is considered with Critical Energy if its en-
ergy level is less than or equal to 0.25; the UAV is
considered with Hungry Energy if its energy level
is less than or equal to 0.5; and the UAV distance
is considered Far if its distance level is greater
than or equal to 0.75. In other words, in the crisp
set model there is no fuzziness or fuzzy uncertainty
which is a type of uncertainty that arises from lin-
guistic imprecision or vagueness.

5 Simulation results of decision making

with fuzzy information

This section reports the results for three scenar-
ios. The first one analyzed the influence of envi-
ronment size; The second simulation analyzed the
effect of the number of UAVs; and the last ana-
lyzed the influence of each fuzzy rule. For each
scenario we simulated 30 independent trials for
the fuzzy approach and for the crisp approach.

5.1 Death by lack of Energy metrics

In the previous works (Silva et al., 2012)
(Monteiro et al., 2013), the following metrics were
already proposed: Collision (CL): measures the
collision degree; Targets Tracking (TT ): measures
the swarm of UAVs tracking capability. We pro-
pose in this paper a new metrics named Death
by lack of Energy (DE) in order to evaluate the
percentage of UAVs that dies due to the lack of

energy and is presented by Equation (11):

DE =

Imax∑

t=1

nuav−dth(t)

nuav

, (11)

where Imax is the maximum number of itera-
tions, nuav−dth is the number of dead UAVs by
lack of energy and nuav is the total number of
UAVs at beginning. If the current energy is over,
Wuav−crt(t) = 0, the UAV enters in a Death En-
ergy state and becomes inoperative.

5.2 Analysis Regarding the Environment Size

We performed an analysis regarding DE as a func-
tion of the environment size. We compared the use
of fuzzy decision making with crisp decision mak-
ing. The boxplots for both cases are presented in
Fig. 2. One can observe from Fig. 2 that DE
increases as the size of environment also increases
when a crisp decision making was deployed from
150 m2 to 200 m2. On the other hand, DE=0
when the fuzzy decision making mechanism was
used for the entire range.
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Figure 2: DE as a function of environment size
varying from 100 m2 to 200 m2 with crisp decision
making. DE was zero for all range with fuzzy
decision making.

We performed the Wilcoxon non-parametric
statistical test for the tracking capability (TT)
and the Collision (CL) comparing the fuzzy and
crisp approaches with a 5% significance level and
there was no significative difference for TT and
CL. These results suggest that a fuzzy decision
making can avoid dead UAVs, while not affecting
the collision avoidance and target tracking.

5.3 Analysis Regarding the Number of UAVs

We analyzed the influence of the number of UAVs
in the Death Energy varying the number of UAVs
from 3 to 20 for the crisp and the fuzzy ap-
proaches. Fig.3 presents the results.

One can observe that the average value for DE
is around 30% regardless the number of UAVs for
the Crisp approach. On the other hand, not even
a single UAV died due to the lack of energy for the



Table 1: Default parameters.
Parameter Description Value

Env Environment area 200 m2

rbase Recharging area radius 10 m
Wuav−cap UAV energy capacity 1000 mAh
Wuav−cap−std UAV energy capacity 0 mAh

standard deviation
Puav−rch Recharging Power 23 mAh
nuav Total number of UAVs 10

standard deviation
vuav−max UAV maximum speed 0.5 m/s
auav−max UAV maximum acceleration 0.3 m/s2

w Inertia weight 1.0
nnei−max Maximum number of neighbors 2
acog Cognitive acceleration 1.0
asoc Social acceleration 3.0
euav UAV extension range 0.1 m
ntgt Number of targets 1
vtgt−max Target maximum acceleration 0.4 m/s
atgt−max Target maximum acceleration 0.2 m/s2
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Figure 3: DE as a function of the number of UAVs
varying from 3 to 20 with crisp decision making.
DE was zero for all range with fuzzy decision mak-
ing.

fuzzy approach. We performed the Wilcoxon non-
parametric statistical test for TT and CL compar-
ing the fuzzy and crisp approaches with a 5% sig-
nificance level. For all situations there is no signi-
ficative difference for TT and CL. Table 1 presents
the default values for the parameters used in the
following simulations.

5.4 Influence of the Membership Rules

We analyzed the influence of the three fuzzy rules
individually in the DE metrics. Fig. 4 presents
the DE as a function of activation of the three
fuzzy rules for Wuav−cap−std equals (a) 0 and (b)
115 mAh. The elements of the 3-tuple represents
whether the fuzzy rule was activated (ON) or not
(OFF).

One can observe in Fig. 4 that the de-
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Figure 4: DE as a function of the activation of
fuzzy rules.

activation of Rule 1 implied in a DE increase-
ment from zero to approximately 40% in both
cases. This could be expected since the Rule 1
is only related to Critical fuzzy set and proba-
bly should be the most used rule. The initial-
ization of the Wuav−cap by a normal distribution,
N(Wuav−cap,Wuav−cap−std), caused different in-
fluences of Rule 2. DE presented some outliers
when the Rule 2 was deactivated and Wuav−cap

was not normally distributed. However, when
Wuav−cap is normally distributed, the deactiva-
tion of Rule 2 implied in a DE increasement from
zero to 5%. Finally, the deactivation of Rule 3 did
not affected DE, but our hypothesis is that Rule 3
could support an alternation behavior when track-
ing targets.

6 Conclusions

We proposed a fuzzy health monitoring to tackle
the management of energy in swarms of UAV. The
fuzzy system is composed by 3 fuzzy variables, 9
fuzzy sets and three fuzzy rules. We also proposed
the membership functions for all fuzzy sets. We
also developed a new metrics named Death by lack
of Energy (DE) in order to measure the percent-
age of dead UAVs due to the lack of energy and
analyzed the proposed metrics, DE, regarding the
environment size, the number of UAVs and the
influence of the three fuzzy rules.

The proposed fuzzy mechanism mitigated the
DE problem which occurs when crisp sets are de-
ployed. Although the preliminary results indicate
a good performance, it is still necessary to assess
the mechanism with different number of targets,



heterogeneous swarms and distributed recharging
spots in large areas.

For future work, we intend to use type-II fuzzy
sets to evolve the proposed mechanism, evolve the
current coordination model by including some col-
laborative skills in the UAVs in order to improve
the tracking capability and include mechanisms to
diminish the energy consumption.
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